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Versatile video coding (VVC) is the newest video compression standard. It adopts quadtree with nested multi-
type tree (QT-MTT) to encode square or rectangular coding units (CUs). The QT-MTT coding structure is more
flexible for encoding video texture, but it is also accompanied by many time-consuming algorithms. So, this work
proposes fast algorithms to determine horizontal or vertical split for binary or ternary partition of a 32 x 32 CU
in the VVC intra coding to replace the rate-distortion optimization (RDO) process, which is time-consuming. The

proposed fast algorithms are actually a two-step algorithm, including feature analysis method and deep learning
method. The feature analysis method is based on variances of pixels, and the deep learning method applies the
convolution neural networks (CNNs) for classification. Experimental results show that the proposed method can
reduce encoding time by 28.94% on average but increase Bjontegaard delta bit rate (BDBR) by about 0.83%.

1. Introduction

High efficiency video coding (HEVC) [1] has become gradually
incapable of supporting high resolution in videos. The joint video
exploration team (JVET) discussed and formulated the latest video
compression standard called versatile video coding (VVC) from 2015,
with the final version completed in July 2020 [2]. VVC can encode video
content to the same level of visual quality while using about 50% fewer
bits than HEVC. In addition to supporting 4 K or higher video
compression, VVC also supports versatile applications, such as high
dynamic range, screen content coding, aerial photography, and 360°
videos [3-5], etc.

VVC adopts quadtree with nested multi-type tree (QT-MTT) coding
structure [6]. A coding tree unit (CTU) is first partitioned by a quater-
nary tree, and then the quaternary tree leaf nodes can be further parti-
tioned by a multi-type tree structure. Multi-type tree structure comprises
four splitting types, including binary tree horizontal structure (BTH),
binary tree vertical structure (BTV), ternary tree horizontal structure
(TTH), and ternary tree vertical structure (TTV). BTH and BTV are
grouped as BT, and TTH and TTV are grouped as TT. The union of BT and
TT is called MTT. VVC removes the separation of the CU, prediction unit
(PU), and transform unit (TU) coding process concepts used in HEVC. A
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CU can be either a square or rectangular shape, which allows the se-
lection of CUs to be closer to the textures of figure content. The QT-MTT
coding structure can thus achieve better predictive coding performance
than only using the QT coding structure of HEVC [7]. Fig. 1 shows an
example of a CTU partitioned into multiple CUs using MTT coding
structure [8]. The black lines represent QT in which CUs are square
shapes. The blue lines represent BT, and the red lines represent TT with
rectangular-shaped CUs. QT-MTT provides a content-adaptive coding
tree structure comprised of a CTU.

The encoding process of VVC intra-frames is a revision of HEVC, with
the primary differences in procedures between HEVC and VVC described
as follows [9]. HEVC adopts rough mode decision (RMD) and most
probable modes (MPM), but VVC divides RMD into RMD-1 and RMD-2
because VVC has 67 intra modes. RMD-1 evaluates 33 directional
(angular) intra modes plus DC and planar, just as HEVC does. These 35
intra modes are calculated by the sum of absolute transformed differ-
ences (SATDs), a simpler calculation method, to select MPM candidates.
RMD-2 performs a refinement step to evaluate the SATDs of angular
modes adjacent to the angular modes selected by RMD-1. In addition,
VVC adopts other new coding tools to improve coding efficiency, such as
multiple reference line (MRL), matrix-based intra prediction (MIP) and
intra subpartition (ISP) [10-12]. Table 1 lists the coding performance of
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all intra configurations between VTM 7.0, the reference software of
VVC, and HM 16.20, the reference software of HEVC [13], and shows
that the average encoding time of VVC intra coding is about 27 times
that of HEVC. Thus, developing some faster algorithms to balance the
coding quality and the time-consuming coding process has become an
important issue.

Fast algorithms for VVC intra coding based on the feature analysis of
a CU are summarized as follows. Fan. et al. [14], and Chen et al. [15]
proposed fast algorithms for intra-frame prediction by applying the
variance or gradient on a 32 x 32 CU. The variance of pixels was used to
determine the smoothness of a CU, while gradient measurement was
applied by Sobel filters. Horizontal gradient and vertical gradient
determined the horizontal split or vertical split of a CU. The result of
feature analysis was applied for QT early termination or QT early split to
skip the rate distortion optimization (RDO) process. In [16], the authors
selected five main intra modes, including angles 2, 18, 34, 50, and 66. By
calculating their SATD values, the BT partition or TT partition could be
predicted. The split (shape) between a CU and its sub-CUs were analyzed
[17]. If the parent CU was a horizontal (or vertical) split, then there was
a higher chance that this CU would be horizontal (or vertical). The
conditional probability of splitting was calculated by Bayesian theorem.
In [18], the authors analyzed pixel differences between the current CU
and neighboring CUs. The gradients were measured in 4 directions,
including the horizontal, vertical, 45°, and 135°. They proposed that if
there were not many gradient differences between these four directions,
the texture of this CU could be smooth, and it was not to be partitioned.
By contrast, if the gradient in one direction was much larger than the
other 3 directions, this CU tended to be partitioned.

From the work related to VVC intra coding, feature analysis such as
variances or gradients of a CU block can be used for partition decisions.
If the variance is small, indicating that the texture pattern is smooth, this
CU is likely not to be partitioned. In contrast, if the variance is large, this
CU is likely to be partitioned.

Deep learning is a new area of machine learning, and it is also a
rapidly growing field in artificial intelligence. Artificial intelligence tries
to mimic the mechanism of the human brain by training from the data
and extracting significant information. This work uses convolutional
neural networks (CNNs) to extract features during intra prediction. The
basic structure of CNNs consists of convolutional layers, pooling layers,
and fully connective layers. By the operations of convolution and
downsampling, some significant characteristics of the input data can be
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Table 1
Comparative performance of VTM 7.0 and HM 16.20 [13].

All Intra
Over HM16.20

Y U \'% EncT DecT
Class A1 -28,27%  -33,55% -33,95% 1635% 173%
Class A2 -27,97%  -20,66% -12,93% 2664% 182%
ClassB  -21,27%  -20,04% -27,35% 2916% 184%
ClassC  -22,00% -19,82% -23,88% 4102% 184%
ClassE  -25,40% -21,93% -26,55% 2364% 166%
Overall  -24,40%  -22,66% -25,14% 2717% 179%
ClassD  -17,82% -13,97% -15,50% 4532% 187%
ClassF  -38,93%  -39,38% -41,87% 4825% 180%

extracted [19-20].

Fast algorithms for VVC intra coding based on deep learning are
summarized as follows. In [21], the authors applied ResNets [22] of
CNNs. The input was a 65 x 65 pixel block, which was a 64 x 64 CU plus
one additional line on the left and top of the CU. After convolution and
pooling, the output was a vector that gave probabilities of 4 x 4
boundaries of the block. This probability vector was further exploited by
the encoder to determine whether or not this CU was required to be split.
An adaptive CU split decision was proposed for intra frame with the
pooling-variable CNNs [23]. In particular, they proposed shape-
adaptive CNNs by using a pooling method to allow the input CU with
square shapes to retain the original information of this CU. With the
shape-based CNNs training scheme, various training sample sizes of CUs
could be processed on the same CNNs. In [24], the authors proposed a
deep learning approach to predict the CU partition for reducing the
HEVC complexity at both intra-and inter-modes, which was based on
CNNs and long- and short-term memory networks. They also established
a large-scale database [25] for training, and an early-terminated hier-
archical CNN that can learn to predict from the CU partition map.
Consequently, the encoding complexity of intra-mode HEVC could be
drastically reduced. CNNs were used to predict the quadtree with binary
tree (QTBT) partition depth range of 32 x 32 blocks directly according
to the inherent texture richness of the image [26]. For training optimi-
zation, they applied a misclassification penalty term combined with L2

CTU

Quadtree

Binary tree

Ternary tree

Fig. 1. An example of MTT coding structure [8].
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HingeLoss function for regulation.

This work aims to reduce the encoding time of VVC intra coding and
preserve high quality of video coding. Fast algorithms are proposed to
determine the vertical split or horizontal split of 32 x 32 CUs from BT or
TT partition. The proposed methods can be separated into two steps, the
first step of which is the feature analysis method. By using feature map
conversion and calculating variances, most 32 x 32 CUs can be classified
with little coding gain lost. Those undermined CUs are classified by
CNN . Feature analysis method can be treated as a preprocessing step to
the CNNs step. The preprocessing has two advantages. First, it can
reduce the load of CNNs for training. Second, it can reduce the coding
performance lost from CNNs.

This paper is organized as follows. Section II describes the proposed
fast algorithms. Experimental results are described in Section III. Finally,
Section IV presents the conclusion.

2. Fast algorithms for intra coding

Proposed fast algorithms are a two-step method to reduce the
encoding time of VVC intra coding. Fig. 2 plots the difference between
the original VVC and the proposed method. The procedure of VTM
processing MTT is plotted on the right-hand side, marked by a yellow
color zone. It processes the BTH, BTV, TTH, and TTV sequentially, and
then determines the best one. By contrast, the procedure of the proposed
method is plotted on the left-hand side, marked by a blue color zone.
Fast algorithms determine the horizontal and vertical split for BT, and
TT, sequentially. If a splitting condition satisfies the proposed criteria,
then this split is selected as the candidate without further comparison.

Start CU encoding

A 4

Perform intra prediction —b[ QT ]

Proposed

TT_Hor./Ver. decision

v v

ERED v
]

—>»|  Select optimal mode

based on RDO

Finish CU encoding

Fig. 2. Comparison of procedures between VTM and proposed method.
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In this work, we applies fast algorithms to determine the splits of 32
x 32 CU blocks. This is because if there is an error in determination of
splits for 64 x 64 CU blocks, a huger loss may occur in the encoding
performance, and the splits for 16 x 16 CU blocks do not occupy much
encoding time. Since the transmission bit rate increases little, the
decoding time is almost the same as the original VTM. This work focuses
on the reduction of encoding time, and the early termination of CU split
decision is the main contribution of the proposed method.

The proposed fast algorithms can be separated into two steps. The
first step is the feature analysis method, and the second step is to apply
CNNs for classification. The following two sub-sections describe the
proposed method in detail.

A. Feature Analysis of CUs

From the analysis of related work, variances of pixels in a CU can be
applied to measure texture complexity [14-15]. In this work, we use
variances of pixels to determine horizontal or vertical split of BT or TT
partitions, respectively. To reduce heavy calculations and to avoid the
influence from small region changes, this work applies feature map
conversion. Each 32 x 32 CU is divided into 16 8 x 8 pixel blocks. The
variance of each 8 x 8 pixels is calculated as a new unit, called a feature
map. The variance of each feature map can be calculated by (1),

64Zk oZz 0 (Psirigist —H,,) 1)

where (i,j) is the coordinate of the feature map, p;; is the pixel value at (i,
J),and ;= éZZZOZZZOpSi+k13j+IiS the mean value at (i,j). (1) simplifies
the calculation of variance; in particular, the feature map can be fitted to
any CU size for variance calculation because it is a common divisor of
any size of CU.

To determine vertical or horizontal split, BTH, BTV, TTH, or TTV use
different blocks of variances for measurement. Fig. 3 plots variance
calculations for BTH, BTV, TTH, or TTV, respectively. For BTH, it re-
quires the Varg!" and Varbi!. For BTV, it the requires Vars!¥ and Varbs".
For TTH, it requires Varg1?, Vard?¥, and VarlI. And for TTV, it requires

Mo (i, )

VarllV, Varl?V and VarllV

Variance calculations for BTH, BTV, TTH, or TTV splits are based on
the pixel blocks which partition a 32 x32 CU. Pixel blocks are plotted by
the green lines for these four splits, respectively, as shown in Fig. 4.
Formulas for BTH variance calculations based on a feature map are
expressed by (2) and (3),

)
Varg" = > 42, (,Z, o | FMuar(iid) = 5 4Zk ST Mk, 1)]

(2)

2

Varg," = .421 ZZ] o |FMurind) = 5, 4EA S Mk, 1)]

3

|
— Originalimage — [ 32 FMyqr -4

32 4

Fig. 3. Variance calculations based on feature map.



J.-T. Fang et al.
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Fig. 4. Examples of variance calculations for classification.

where Varg1¥ is for the upper sub-CU and Varb2Fis for the lower sub-CU.
Formulas for TTH variance calculations based on a feature map are
expressed by (4), (5), and (6),
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2
Varl™ = 42 {FMW J) 421 M (0, 1)}, 4
2
Varff" = - 42[ M) 7 42“ > Mok, z)} :
(5)
2
VarT = 42 FM,, (3 ;‘ fOFMW(3,1)}. ©)

Variance calculations based on feature maps for Var®”¥ and Var™"
can be derived based on Fig. 3 (c¢) and (d). Formula of Varng v,
VarklV VarllV. VaryyV, and Vardy’ are similar to formula of (2), (3), (4),
(5), and (6), respectively. Fig. 4 plots examples of variance calculations
based on a feature map where different colors represent different vari-
ance values. Take BTH in Fig. 4(a) as an example. The variance differ-
ence between Vars"and Var5i! is large, and this CU has a high chance to
be selected as BTH partition. In other words, if the upper (or lower) half
block has smooth content, but the other half block contains complex
content, then the variance difference between Varg,” and Vars," is large,
and there is a high chance that this CU selects BTH partition. Similar
deduction of feature analysis can be applied to other partitions.

For building models to determine vertical or horizontal split of BT
partition, this work used sequences 768 x 512 and 2880 x 1920 from
CPIH database [27]. Frames were encoded by VVC intra coding under
four kinds of quantization parameters (QPs) setting, i.e. 22, 27, 32, and

251

35F

Fig. 5. Variance distributions of BT.
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37, separately. CUs with 32 x 32 pixels determined by RDO to be BTH
or BTV were selected. Approximately 1 x 10° image blocks were
selected, and these images were almost equally distributed between
vertical or horizontal split.

To build a relationship between Var5i" and Vargi” and BTH (or
BTV), data of Varb/ and VarBl! are treated as a point in a two-
dimensional Cartesian coordinate. Fig. 5(a) plots Varb/ and
VarB!distributions of BTH and BTV under QP 22, respectively, where
the x-axis is Varb]" calculated by (2), and the y-axis is Varba" calculated
by (3). Red triangle points represent BTH, and blue star points represent
BTV. Fig. 5(a) shows that if CUs are finally determined by BTH, their
VarE™ and Var8I" distributions are near the x-axis or y-axis. This result
is consistent with Fig. 4(a) of BTH. By contrast, if CUs are finally
determined by BTV, their Vars? and Var5}? distributions are near 45°
between x-axis and y-axis. This result is consistent with Fig. 4(b) of BTV.

Fig. 5(b) shows VarngV and VarngV distributions of BTH and BTV
under QP 22, respectively, where the x-axis is Varg! ', and the y-axis is
VarBlV. Red triangle points (BTH) are near 45° between x-axis and y-
axis, and blue star points (BTV) are near the x-axis or y-axis. Vars!’,
while VarglV distributions are in opposite positions, compared to Vargi "
and VarBl¥® distributions.

In Fig. 5(a), dashed red lines are plotted to separate the red triangle
points and blue star points. Mathematically, a parabolic equation is used
to separate vertical split and horizontal split. The parabolic equation is
derived by (7),

far(x, y) = alx — b)’ — (y—b) )

where a is the weight, and b is the bias from the origin. In Fig. 5(a), most
red triangle points are located near the x-axis or y-axis, outside the
dashed red line. By contrast, most blue star points are located inside the
dashed red line. In other words, if data of Vars," and Vargs" in (7) are
less than zero, then this CU is classified as BTH. Otherwise, the split is
classified as BTV. From the experiment data, the bias b is set at 1 x 10°.
The weight a can determine the curvature of the parabola. To reduce the
error decision, ais setat1 x 107>

Fig. 5(b) has opposite distributions to Fig. 5(a). In Fig. 5(b), most
blue star points are located near the x-axis or y-axis, outside the dashed
red line. By contrast, most red triangle points are located inside the
dashed red line. For simplification, we use the same equation and pa-
rameters in (7) for classification. If data of Var5!V and Var5:" in (7) are
less than zero, then this CU is classified as BTV. Otherwise, the split is
classified as BTH.
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Similar methods are used to build models for TT classification. Se-
quences from CPIH database [27] were adopted. About 1 x10° CUs
finally determined by RDO to be vertical or horizontal split from TT
partition were selected. Fig. 6(a) plots Varyl?, Var)t¥, and Varl}? dis-
tributions for TTH and TTV, respectively. A three-dimensional parabolic
equation to separate TTH and TTV can be expressed by (8),

frr(x,y,2) = a((x = B>+ (= B)*) — (z— B) (8

where «a is the weight, and g is the bias from the origin.

In Fig. 6(a), most red triangle points are located near the x-axis, y-
axis, or z-axis. These points are outside the dashed red line. By contrast,
most blue star points are located inside the dashed red lines. This means
that if data of Var)!™, Varl¥, and Varll¥ in (8) are less than zero, then
the CU is classified as TTH. Otherwise, it classified as TTV. Distributions
in Fig. 6(b) have the opposite distributions to Fig. 6(a). For simplifica-
tion, we use the same equation and parameters in (8). In Fig. 6(b), most
blue star points are located near the x-axis, y-axis, or z-axis. These points
are outside the dashed red line. By contrast, most red triangle points are
located inside the dashed red line. If value of Var(]*, Var}", and Varf}”
in (8) are less than zero, then this CU is classified as TTV; otherwise it is
classified as TTH. From the experimental data, the bias # is set at 1 x
105, and the weight ais set at 1 x 1075,

The proposed feature analysis method is used to determine hori-
zontal or vertical split for BT and TT partition, respectively. Data of
VarE™ and VarEl?, as well as Vars]” and Var5lV in (7) are for BTH and
BTV split determination. Using (7) for BT split determination, three
conditions may result. The first condition is that both equations are less
than zero. This condition represents that variances in both x-axis and y-
axis are small; this CU is located near the original point as shown in
Figs. 5 and 6. It means that this CU has a low likelihood of choosing BT
partition and can skip horizontal and vertical split decision by RDO. The
second condition is that only one direction (either vertical or horizontal)
has high variance value. This condition represents that this CU is located
near the x-axis or y-axis as shown in Figs. 5 and 6. It means that this CU
has a high chance to be determined as requiring vertical (or horizontal)
split. The third condition is that variances in both directions are high.
This CU is located inside the dashed red line as shown in Figs. 6 and 7.
Under this condition, the proposed feature analysis method fails to
determine this CU partition, and this CU split decision has to use CNNs
for classification.

Data of Vari!™, Var!™, and Varll¥, as well as of Var?1V, VarllV, and
VarllV, in (8) are for TTH and TTV split determination. Three conditions
may occur in TT classification by using (8) for determination. Similar
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Fig. 7 plots the flow chart for determination of vertical and hori-
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opt.-mode.

Discrete distribution map of optimal mode, QP-22

Select-TTH-as'the: .

A TTHis opt. mode
% TTVisopt. mode

Fig. 7. Flow chart of the feature analysis method.

proposed feature analysis method. In particular, from our later
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experiment results, most 32 x 32 CUs are under conditions (1) and (2).
The small amount of CUs under condition (3) used CNNs for classifica-
tion, and this can reduce the input loading of CNNs.
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B. 4 Convolution neural networks for classification

CNNs are used to determine those undetermined MTT (either BT or
TT) partitions as discussed in the previous subsection. For each QP,
image content for prediction coding may be changed. The prediction
coding may be changed under different QP setting; so, four different
CNNs models are required under different QPs (22, 27, 32, and 37).
Training data are from CPIH database [27]. To reduce the correlation of
labels in CNNs classification, 32 x 32 CU image blocks at increased
intervals are selected for training. Thus, more test sequences are selected
for labeling, including sequences with sizes of 768 x 512, 1536 x

1024, 2880 x 1920, and 4928 x 3264 from CPIH database. These
sequences are first encoded by VVC intra coding. Then, from the enco-
ded result, those CUs with 32 x 32 pixels, and determined by RDO to be
MTT partitions, are extracted. These extracted 32 x 32 CUs are then
transformed into 4 x 4 feature maps as input data to CNNs. In other
words, image data are classified into two categories, i.e. BTH, and BTV,
(or TTH, and TTV). This work adopts supervised learning, and two
categories of images data are used for CNNs labeling. After some expe-
rience with training the CNNs model, the following procedure was found
to improve the accuracy of CNNs performance. That is, BT image data
were first used to train the neural networks model, and then TT image
data were used to update the trained neural networks model. The same
CNNs model are used for BT and TT split decisions. CNNs classify the
vertical or horizontal split from MTT partition of a 32 x 32 CU. After
classification, the split result is sent back to VTM, and VTM continues the
remaining procedures of intra coding.

Proposed CNNs structure is plotted in Fig. 8, including one convo-
lution layer, four dense block layers, and one classification layer. The
lost function is cross entropy with Ly regulation, expressed by (9),

+ay w 9

n

Liy) =+ { =3 ylog(y)

where y is the prediction probability, expressed by y;(x)=

softmax(x); = % L is regularization, where w is the kernel, and «

is the parameter of weight decay.

Input data to CNNs are a matrix with dimension 4 x 4, composed of
16 4 x 4 feature maps. The feature map is a 8 x 8 pixels conversion,
which can reduce heavy calculations by CNNs [29].Sixteen 4 x 4 feature
maps equals 32 x 32 pixels of a CU. The first convolution layer of CNNs
is applied as a 3 x3 kernel with stride 1. After the first layer of convo-
lution, 16 4 x 4 feature maps can be transformed into 32 4x 4 output.
The remaining 4 convolution layers and dense blocks refer to [28]. Using
dense blocks can avoid the vanishing gradient problem. Batch normal-
ization is achieved by re-centering and re-scaling to make the neural
networks faster and more stable through normalization of the layers’
inputs [30].

Fig. 8 shows that the dense net connects each layer to every other
layer in a feed-forward fashion. For each layer, the feature maps of all
preceding layers are used as inputs, and its own feature map is used as
input into all subsequent layers [28]. After 4 dense layers, average
pooling is used to remove noise points. Finally, 64 dimensions of full
connections are employed for classification and the final classification
result is sent to the output layer.

The main hyper-parameters of proposed CNNs are listed in Table 2.

Table 2

Hyper-parameters of proposed CNNs.
Batch size 64
Learning rate 0.0001
Epochs 60
Dropout 0.75

Weight decay 0.005
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Note that the dropout is used to avoid overfitting in the training process.
To increase the accuracy of validating, the dropout is omitted in the
validating process.

3. Experimental results

Experiments are designed to demonstrate the performance of the
proposed algorithms. Experiment environment is listed as follows. For
training, the CPU is i7-9700@3.6 GHz, the RAM is 64GM, the GPU is
RTX 2080, and the OS is Ubuntu-X64 18.04. For validating, the CPU is
i7-6700 @3.4 GHz, the RAM is 24GM, and the OS is Windows 10-X64.
The software of CNNs is Python 3.6 and the neural network took is
Tensorflow 1.12.0. Reference software is VTM version 7.0 [31], and all
intra configuration is used. Test sequences refer to common to test
conditions (CTC) of VVC [32].

Table 3 lists the accuracy of CNNs under different QP settings.
Training data are approximately 1 x10° image blocks, and validation
data are approximately 1 x10* image blocks. The training procedure is
separated into two steps. The first step is to train a CNNs model for BT
partition, and the second step is using the already trained CNNs model to
build another CNNs model for TT partition, thus the two-step procedure
to build CNNs models is more achievable. More 32 x 32 CU image
blocks are used for labeling in BT partition than labeling in TT partition
because the former requires more data to start a new CNNs model. About
60% of image blocks are for BT partition training, and about 40% for TT
partition training. For BT/TT partition, the number of image blocks used
for labeling the horizontal split or vertical split are almost equal. Table 3
demonstrates the ratio between the training data and validating data is
about 10:1 because the two-step training process is applied. Average
accuracy from four CNNs models is 72.2%. In other words, 28.8% of
classifications by CNNs may be wrong. The dropout procedure is not
applied in the validating process, and this may result in the validating
performance having higher accuracy than the training performance.

Table 4 lists performances of the feature analysis method. About 70%
(from 59% to 78%) of 32 x 32 CUs use the feature analysis method. In
other words, only about 30% of CUs use CNNs for classification, which
greatly reduces loading, and also reduces the impact on video quality
drop by misclassification of CNNs. Table 4 indicates that as QP setting
decreases, the percentage of using feature analysis method increases.
This is because more details of image content can be preserved for lower
values of QPs, and the variance differences between sub-CU blocks are
more significant. Images using feature analysis method at QP 37 are 1.27
times of images at QP 22.

Table 4 also lists bit rate difference and PSNR difference compared to
original VVC performance. Average bit rate increases about 0.5% and
average PSNR drops about 0.02% by using the feature analysis method
alone. The percentages of BT and TT in Table 4 show the percentages of
32 x 32 CUs that applied the feature analysis method for classification,
respectively. This performance is good because about 70% of BT/TT
applied the feature analysis method, and about 30% of BT/TT applied
the CNNs for horizontal/vertical split determination. Furthermore, as
QP increases, the number of CUs using the feature analysis method in-
creases. So, the bit rate increases and the PSNR performance drops more.

Performance of proposed methods and performance comparisons
with state-of-the-art works [14] are listed in Table 5. The Bjgntegaard
delta bit rate (BDBR) is calculated based on [33]. Reduction of coding

Table 3
Performance of CNNs.

Number of data Accuracy (%)

QP Training Validating Training Validating
37 103,164 10,000 70.1 71.4
32 100,782 10,000 69.8 72.7
27 93,998 10,000 69.6 72.8
22 88,018 10,000 68.6 71.7
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Table 4
Performance by feature analysis method.
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Class Sequence QP Proportion of BT (%) Proportion of TT (%) A Biterate (%) A PSNRy,y (%)
B BQTerrace 22 15.99 16.36 0.06 <0.01
27 32.48 33.98 0.36 <0.01
32 37.02 39.99 0.54 —0.02
37 39.39 44.26 0.96 —0.04
C PartyScene 22 6.03 6.48 0.06 <0.01
27 9.06 10.12 0.09 <0.01
32 14.92 16.84 0.21 0.01
37 26.65 31.23 0.57 0.01
RaceHorsesC 22 40.74 42.02 0.30 0.01
27 43.42 44.68 0.23 —0.01
32 45.23 47.26 0.39 —0.01
37 49.38 52.74 0.69 —0.01
D BlowingBubbles 22 7.18 7.33 —0.04 —0.01
27 12.82 12.97 0.10 0.01
32 25.27 25.71 0.30 0.01
37 45.86 47.84 0.99 0.03
RaceHorses 22 18.68 19.56 0.09 <0.01
27 21.68 22.49 0.15 0.01
32 33.41 34.80 0.42 0.01
37 46.52 49.52 0.48 —0.03
E Johnny 22 27.33 30.26 0.63 —0.01
27 24.55 27.98 0.73 —0.02
32 24.70 28.91 1.32 —0.04
37 24.84 29.57 1.26 —0.13
KristenAndSara 22 39.55 41.17 0.62 —0.01
27 36.36 38.29 0.77 —0.03
32 33.87 36.10 0.73 -0.07
37 29.39 31.91 0.77 —0.14
All class average 22 22.21 23.31 0.25 —0.01
27 25.77 27.22 0.35 —-0.01
32 30.63 32.80 0.56 —0.02
37 37.43 41.01 0.82 —0.04
Table 5
System performance and comparison.
Class Sequence [7]1 (QTMT/ VTM-7.0) Proposed algorithm (QTMT/ VTM-7.0)
CNN off Overall
BDBR (%) AT (%) TS/BDBR BDBR (%) AT (%) TS/BDBR BDBR (%) AT (%) TS/BDBR
B BQTerrace 1.08 45.30 41.94 0.08 8.60 111.76 0.58 30.24 52.58
Cactus 1.84 52.44 28.50 0.08 6.68 81.78 0.81 30.11 37.24
BasketballDrive 3.28 59.35 18.09 0.06 7.61 128.17 1.79 33.78 18.89
Cc BasketballDrill 1.82 48.48 26.64 0.21 10.32 65.42 0.92 29.93 32.49
BQMall 1.87 52.47 28.06 0.07 15.73 212.57 1.09 32.63 29.94
PartyScene 0.26 38.62 148.54 0.06 13.68 234.33 0.22 25.55 117.55
RaceHorsesC 0.88 49.05 55.74 0.04 11.54 262.27 0.45 31.64 70.31
D BasketballPass 1.95 47.70 24.46 0.02 10.32 443.68 1.13 29.19 25.90
BQSquare 0.19 31.95 168.16 < 0.01 7.62 > 999.99 0.08 19.95 264.82
BlowingBubbles 0.19 40.35 85.85 0.02 6.10 305.00 0.23 23.93 119.96
RaceHorses 0.54 41.69 77.20 0.02 13.31 605.00 0.28 30.95 111.35
E FourPeople 2.70 57.57 21.32 0.11 12.28 116.43 1.27 28.83 22.23
Johnny 3.22 56.88 17.66 0.05 8.59 162.64 1.53 31.88 22.22
KristenAndSara 2.78 55.11 19.82 0.06 7.74 138.87 1.29 26.50 20.41
All class average 1.61 48.35 29.95 0.07 10.01 147.85 0.83 28.94 34.71
time by the proposed method is calculated by (10), Class_C PartyScene, and Class_D BlowingBubbles and RaceHorses, can
LT (OP) — T-(OP maintain better video quality. The reason for this can be explained as
AT = ZZ% x 100% (10) follows. Table 5 shows that about 70% of 32 x 32 CUs use feature
or R

where Tr(QP) and T¢ (QP) are coding time of VVC reference software
and proposed method, respectively. Four QPs are 22, 27, 32, and 37.
Table 5 shows that the proposed method can save about 28.94% of
coding time and BDBR increases about 0.83%. The ratio of time saving
per BDBR (TS/BDBR) is about 34.7. For feature analysis method alone,
about 10% of coding time can be saved and BDBR increases about 0.07.
In other words, the feature analysis method results in little video quality
loss. Analysis of BDBR performance of each test sequence, in general,
shows that sequences with complex content, such as Class_B BQTerrace,

analysis method for split decision, and this method can maintain high
video quality. Most 32 x 32 CUs with complex content are from these
sequences and use feature analysis method, so, their BDBR performance
drops less.

Fan. et al. used the variance of variance to determine the best choice
among 5 coding structures (QT, BTH, BTV, TTV, and TTH) [14]. By
contrast, this work proposed a two-step algorithm to determine the
BTH/BTV or TTH/TTV, which combined statistical feature analysis
methods and the CNN classification methods. Both methods are applied
in all intra configuration of the same version of VITM. Although the
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method in Fan. et al. [14] can save more coding time, the video quality
drops more compared with the proposed method. Table 5 shows that for
most of the test sequences, the proposed method has better TS/BDBR
performance than that by the method of [14].

4. Conclusion

This work proposes fast algorithms to determine MTT vertical or
horizontal split decisions on 32 x 32 CUs from VVC intra coding. A two-
step method is proposed. The first step is the feature analysis method. By
using feature map conversion and calculating variances, most 32 x 32 of
CUs can be classified with little coding gain lost. The remaining unde-
termined CUs are classified by CNNs, the second step in the method.
From experiment results, about 70% of 32 x 32 CUs use the feature
analysis method, which can maintain high video quality. The proposed
algorithms take advantage of existing methods but combines them in a
novel way. Improving the CNNs performance is a topic for future work,
including the accuracy of classification, the compatibility with VTM,
and the number of models.
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