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A B S T R A C T   

Versatile video coding (VVC) is the newest video compression standard. It adopts quadtree with nested multi- 
type tree (QT-MTT) to encode square or rectangular coding units (CUs). The QT-MTT coding structure is more 
flexible for encoding video texture, but it is also accompanied by many time-consuming algorithms. So, this work 
proposes fast algorithms to determine horizontal or vertical split for binary or ternary partition of a 32 × 32 CU 
in the VVC intra coding to replace the rate-distortion optimization (RDO) process, which is time-consuming. The 
proposed fast algorithms are actually a two-step algorithm, including feature analysis method and deep learning 
method. The feature analysis method is based on variances of pixels, and the deep learning method applies the 
convolution neural networks (CNNs) for classification. Experimental results show that the proposed method can 
reduce encoding time by 28.94% on average but increase Bjontegaard delta bit rate (BDBR) by about 0.83%.   

1. Introduction 

High efficiency video coding (HEVC) [1] has become gradually 
incapable of supporting high resolution in videos. The joint video 
exploration team (JVET) discussed and formulated the latest video 
compression standard called versatile video coding (VVC) from 2015, 
with the final version completed in July 2020 [2]. VVC can encode video 
content to the same level of visual quality while using about 50% fewer 
bits than HEVC. In addition to supporting 4 K or higher video 
compression, VVC also supports versatile applications, such as high 
dynamic range, screen content coding, aerial photography, and 360◦

videos [3–5], etc. 
VVC adopts quadtree with nested multi-type tree (QT-MTT) coding 

structure [6]. A coding tree unit (CTU) is first partitioned by a quater
nary tree, and then the quaternary tree leaf nodes can be further parti
tioned by a multi-type tree structure. Multi-type tree structure comprises 
four splitting types, including binary tree horizontal structure (BTH), 
binary tree vertical structure (BTV), ternary tree horizontal structure 
(TTH), and ternary tree vertical structure (TTV). BTH and BTV are 
grouped as BT, and TTH and TTV are grouped as TT. The union of BT and 
TT is called MTT. VVC removes the separation of the CU, prediction unit 
(PU), and transform unit (TU) coding process concepts used in HEVC. A 

CU can be either a square or rectangular shape, which allows the se
lection of CUs to be closer to the textures of figure content. The QT-MTT 
coding structure can thus achieve better predictive coding performance 
than only using the QT coding structure of HEVC [7]. Fig. 1 shows an 
example of a CTU partitioned into multiple CUs using MTT coding 
structure [8]. The black lines represent QT in which CUs are square 
shapes. The blue lines represent BT, and the red lines represent TT with 
rectangular-shaped CUs. QT-MTT provides a content-adaptive coding 
tree structure comprised of a CTU. 

The encoding process of VVC intra-frames is a revision of HEVC, with 
the primary differences in procedures between HEVC and VVC described 
as follows [9]. HEVC adopts rough mode decision (RMD) and most 
probable modes (MPM), but VVC divides RMD into RMD-1 and RMD-2 
because VVC has 67 intra modes. RMD-1 evaluates 33 directional 
(angular) intra modes plus DC and planar, just as HEVC does. These 35 
intra modes are calculated by the sum of absolute transformed differ
ences (SATDs), a simpler calculation method, to select MPM candidates. 
RMD-2 performs a refinement step to evaluate the SATDs of angular 
modes adjacent to the angular modes selected by RMD-1. In addition, 
VVC adopts other new coding tools to improve coding efficiency, such as 
multiple reference line (MRL), matrix-based intra prediction (MIP) and 
intra subpartition (ISP) [10–12]. Table 1 lists the coding performance of 
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all intra configurations between VTM 7.0, the reference software of 
VVC, and HM 16.20, the reference software of HEVC [13], and shows 
that the average encoding time of VVC intra coding is about 27 times 
that of HEVC. Thus, developing some faster algorithms to balance the 
coding quality and the time-consuming coding process has become an 
important issue. 

Fast algorithms for VVC intra coding based on the feature analysis of 
a CU are summarized as follows. Fan. et al. [14], and Chen et al. [15] 
proposed fast algorithms for intra-frame prediction by applying the 
variance or gradient on a 32 × 32 CU. The variance of pixels was used to 
determine the smoothness of a CU, while gradient measurement was 
applied by Sobel filters. Horizontal gradient and vertical gradient 
determined the horizontal split or vertical split of a CU. The result of 
feature analysis was applied for QT early termination or QT early split to 
skip the rate distortion optimization (RDO) process. In [16], the authors 
selected five main intra modes, including angles 2, 18, 34, 50, and 66. By 
calculating their SATD values, the BT partition or TT partition could be 
predicted. The split (shape) between a CU and its sub-CUs were analyzed 
[17]. If the parent CU was a horizontal (or vertical) split, then there was 
a higher chance that this CU would be horizontal (or vertical). The 
conditional probability of splitting was calculated by Bayesian theorem. 
In [18], the authors analyzed pixel differences between the current CU 
and neighboring CUs. The gradients were measured in 4 directions, 
including the horizontal, vertical, 45◦, and 135◦. They proposed that if 
there were not many gradient differences between these four directions, 
the texture of this CU could be smooth, and it was not to be partitioned. 
By contrast, if the gradient in one direction was much larger than the 
other 3 directions, this CU tended to be partitioned. 

From the work related to VVC intra coding, feature analysis such as 
variances or gradients of a CU block can be used for partition decisions. 
If the variance is small, indicating that the texture pattern is smooth, this 
CU is likely not to be partitioned. In contrast, if the variance is large, this 
CU is likely to be partitioned. 

Deep learning is a new area of machine learning, and it is also a 
rapidly growing field in artificial intelligence. Artificial intelligence tries 
to mimic the mechanism of the human brain by training from the data 
and extracting significant information. This work uses convolutional 
neural networks (CNNs) to extract features during intra prediction. The 
basic structure of CNNs consists of convolutional layers, pooling layers, 
and fully connective layers. By the operations of convolution and 
downsampling, some significant characteristics of the input data can be 

extracted [19–20]. 
Fast algorithms for VVC intra coding based on deep learning are 

summarized as follows. In [21], the authors applied ResNets [22] of 
CNNs. The input was a 65 × 65 pixel block, which was a 64 × 64 CU plus 
one additional line on the left and top of the CU. After convolution and 
pooling, the output was a vector that gave probabilities of 4 × 4 
boundaries of the block. This probability vector was further exploited by 
the encoder to determine whether or not this CU was required to be split. 
An adaptive CU split decision was proposed for intra frame with the 
pooling-variable CNNs [23]. In particular, they proposed shape- 
adaptive CNNs by using a pooling method to allow the input CU with 
square shapes to retain the original information of this CU. With the 
shape-based CNNs training scheme, various training sample sizes of CUs 
could be processed on the same CNNs. In [24], the authors proposed a 
deep learning approach to predict the CU partition for reducing the 
HEVC complexity at both intra-and inter-modes, which was based on 
CNNs and long- and short-term memory networks. They also established 
a large-scale database [25] for training, and an early-terminated hier
archical CNN that can learn to predict from the CU partition map. 
Consequently, the encoding complexity of intra-mode HEVC could be 
drastically reduced. CNNs were used to predict the quadtree with binary 
tree (QTBT) partition depth range of 32 × 32 blocks directly according 
to the inherent texture richness of the image [26]. For training optimi
zation, they applied a misclassification penalty term combined with L2 

Fig. 1. An example of MTT coding structure [8].  

Table 1 
Comparative performance of VTM 7.0 and HM 16.20 [13].  
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HingeLoss function for regulation. 
This work aims to reduce the encoding time of VVC intra coding and 

preserve high quality of video coding. Fast algorithms are proposed to 
determine the vertical split or horizontal split of 32 × 32 CUs from BT or 
TT partition. The proposed methods can be separated into two steps, the 
first step of which is the feature analysis method. By using feature map 
conversion and calculating variances, most 32 × 32 CUs can be classified 
with little coding gain lost. Those undermined CUs are classified by 
CNNs. Feature analysis method can be treated as a preprocessing step to 
the CNNs step. The preprocessing has two advantages. First, it can 
reduce the load of CNNs for training. Second, it can reduce the coding 
performance lost from CNNs. 

This paper is organized as follows. Section II describes the proposed 
fast algorithms. Experimental results are described in Section III. Finally, 
Section IV presents the conclusion. 

2. Fast algorithms for intra coding 

Proposed fast algorithms are a two-step method to reduce the 
encoding time of VVC intra coding. Fig. 2 plots the difference between 
the original VVC and the proposed method. The procedure of VTM 
processing MTT is plotted on the right-hand side, marked by a yellow 
color zone. It processes the BTH, BTV, TTH, and TTV sequentially, and 
then determines the best one. By contrast, the procedure of the proposed 
method is plotted on the left-hand side, marked by a blue color zone. 
Fast algorithms determine the horizontal and vertical split for BT, and 
TT, sequentially. If a splitting condition satisfies the proposed criteria, 
then this split is selected as the candidate without further comparison. 

In this work, we applies fast algorithms to determine the splits of 32 
× 32 CU blocks. This is because if there is an error in determination of 
splits for 64 × 64 CU blocks, a huger loss may occur in the encoding 
performance, and the splits for 16 × 16 CU blocks do not occupy much 
encoding time. Since the transmission bit rate increases little, the 
decoding time is almost the same as the original VTM. This work focuses 
on the reduction of encoding time, and the early termination of CU split 
decision is the main contribution of the proposed method. 

The proposed fast algorithms can be separated into two steps. The 
first step is the feature analysis method, and the second step is to apply 
CNNs for classification. The following two sub-sections describe the 
proposed method in detail.  

A. Feature Analysis of CUs 

From the analysis of related work, variances of pixels in a CU can be 
applied to measure texture complexity [14–15]. In this work, we use 
variances of pixels to determine horizontal or vertical split of BT or TT 
partitions, respectively. To reduce heavy calculations and to avoid the 
influence from small region changes, this work applies feature map 
conversion. Each 32 × 32 CU is divided into 16 8 × 8 pixel blocks. The 
variance of each 8 × 8 pixels is calculated as a new unit, called a feature 
map. The variance of each feature map can be calculated by (1), 

FMvar(i, j) =
1
64
∑7

k=0

∑7

l=0
(p8i+k,8j+l − μi,j)

2 (1)  

where (i, j) is the coordinate of the feature map, pi,j is the pixel value at (i,
j), and μi,j =

1
64
∑7

k=0
∑7

l=0p8i+k,8j+lis the mean value at (i,j). (1) simplifies 
the calculation of variance; in particular, the feature map can be fitted to 
any CU size for variance calculation because it is a common divisor of 
any size of CU. 

To determine vertical or horizontal split, BTH, BTV, TTH, or TTV use 
different blocks of variances for measurement. Fig. 3 plots variance 
calculations for BTH, BTV, TTH, or TTV, respectively. For BTH, it re
quires the VarBTH

01 and VarBTH
02 . For BTV, it the requires VarBTV

01 and VarBTV
02 . 

For TTH, it requires VarTTH
01 , VarTTH

02 , and VarTTH
03 . And for TTV, it requires 

VarTTV
01 , VarTTV

02 ,and VarTTV
03 . 

Variance calculations for BTH, BTV, TTH, or TTV splits are based on 
the pixel blocks which partition a 32 ⨯32 CU. Pixel blocks are plotted by 
the green lines for these four splits, respectively, as shown in Fig. 4. 
Formulas for BTH variance calculations based on a feature map are 
expressed by (2) and (3), 

VarBTH
01 =

1
2 • 4

∑1

i=0

∑3

j=0

[

FMvar(i, j) −
1

2 • 4
∑1

k=0

∑3

l=0
FMvar(k, l)

]2

(2)  

VarBTH
02 =

1
2 • 4

∑3

i=2

∑3

j=0

[

FMvar(i, j) −
1

2 • 4
∑3

k=2

∑3

l=0
FMvar(k, l)

]2

(3) 

Fig. 2. Comparison of procedures between VTM and proposed method.  Fig. 3. Variance calculations based on feature map.  
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where VarBTH
01 is for the upper sub-CU and VarBTH

02 is for the lower sub-CU. 
Formulas for TTH variance calculations based on a feature map are 
expressed by (4), (5), and (6), 

VarTTH
01 =

1
4
∑3

j=0

[

FMvar(0, j) −
1
4
∑3

l=0
FMvar(0, l)

]2

, (4)  

VarTTH
02 =

1
2 • 4

∑2

i=1

∑3

j=0

[

FMvar(i, j) −
1

2 • 4
∑2

k=1

∑3

l=0
FMvar(k, l)

]2

,

(5)  

VarTTH
03 =

1
4
∑3

j=0

[

FMvar(3, j) −
1
4
∑3

l=0
FMvar(3, l)

]2

. (6) 

Variance calculations based on feature maps for VarBTV and VarTTV 

can be derived based on Fig. 3 (c) and (d). Formula of VarBTV
01 ,

VarBTV
02 ,VarTTV

01 ,VarTTV
02 , and VarTTV

03 are similar to formula of (2), (3), (4), 
(5), and (6), respectively. Fig. 4 plots examples of variance calculations 
based on a feature map where different colors represent different vari
ance values. Take BTH in Fig. 4(a) as an example. The variance differ
ence between VarBTH

01 and VarBTH
02 is large, and this CU has a high chance to 

be selected as BTH partition. In other words, if the upper (or lower) half 
block has smooth content, but the other half block contains complex 
content, then the variance difference between VarBTH

01 and VarBTH
02 is large, 

and there is a high chance that this CU selects BTH partition. Similar 
deduction of feature analysis can be applied to other partitions. 

For building models to determine vertical or horizontal split of BT 
partition, this work used sequences 768 × 512 and 2880 × 1920 from 
CPIH database [27]. Frames were encoded by VVC intra coding under 
four kinds of quantization parameters (QPs) setting, i.e. 22, 27, 32, and 

Fig. 4. Examples of variance calculations for classification.  

Fig. 5. Variance distributions of BT.  
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37, separately. CUs with 32 × 32 pixels determined by RDO to be BTH 
or BTV were selected. Approximately 1 ×105 image blocks were 
selected, and these images were almost equally distributed between 
vertical or horizontal split. 

To build a relationship between VarBTH
01 and VarBTH

02 and BTH (or 
BTV), data of VarBTH

01 and VarBTH
02 are treated as a point in a two- 

dimensional Cartesian coordinate. Fig. 5(a) plots VarBTH
01 and 

VarBTH
02 distributions of BTH and BTV under QP 22, respectively, where 

the x-axis is VarBTH
01 calculated by (2), and the y-axis is VarBTH

02 calculated 
by (3). Red triangle points represent BTH, and blue star points represent 
BTV. Fig. 5(a) shows that if CUs are finally determined by BTH, their 
VarBTH

01 and VarBTH
02 distributions are near the x-axis or y-axis. This result 

is consistent with Fig. 4(a) of BTH. By contrast, if CUs are finally 
determined by BTV, their VarBTH

01 and VarBTH
02 distributions are near 450 

between x-axis and y-axis. This result is consistent with Fig. 4(b) of BTV. 
Fig. 5(b) shows VarBTV

01 and VarBTV
02 distributions of BTH and BTV 

under QP 22, respectively, where the x-axis is VarBTV
01 , and the y-axis is 

VarBTV
02 . Red triangle points (BTH) are near 450 between x-axis and y- 

axis, and blue star points (BTV) are near the x-axis or y-axis. VarBTV
01 , 

while VarBTV
02 distributions are in opposite positions, compared to VarBTH

01 

and VarBTH
02 distributions. 

In Fig. 5(a), dashed red lines are plotted to separate the red triangle 
points and blue star points. Mathematically, a parabolic equation is used 
to separate vertical split and horizontal split. The parabolic equation is 
derived by (7), 

fBT (x, y) = a(x − b)2
− (y − b) (7)  

where a is the weight, and b is the bias from the origin. In Fig. 5(a), most 
red triangle points are located near the x-axis or y-axis, outside the 
dashed red line. By contrast, most blue star points are located inside the 
dashed red line. In other words, if data of VarBTH

01 and VarBTH
02 in (7) are 

less than zero, then this CU is classified as BTH. Otherwise, the split is 
classified as BTV. From the experiment data, the bias b is set at 1 × 105. 
The weight a can determine the curvature of the parabola. To reduce the 
error decision, a is set at 1 × 10− 5 

Fig. 5(b) has opposite distributions to Fig. 5(a). In Fig. 5(b), most 
blue star points are located near the x-axis or y-axis, outside the dashed 
red line. By contrast, most red triangle points are located inside the 
dashed red line. For simplification, we use the same equation and pa
rameters in (7) for classification. If data of VarBTV

01 and VarBTV
02 in (7) are 

less than zero, then this CU is classified as BTV. Otherwise, the split is 
classified as BTH. 

Similar methods are used to build models for TT classification. Se
quences from CPIH database [27] were adopted. About 1 ×105 CUs 
finally determined by RDO to be vertical or horizontal split from TT 
partition were selected. Fig. 6(a) plots VarTTH

01 , VarTTH
02 , and VarTTH

03 dis
tributions for TTH and TTV, respectively. A three-dimensional parabolic 
equation to separate TTH and TTV can be expressed by (8), 

fTT(x, y, z) = α
(
(x − β)2

+(y − β)2)
− (z − β) (8)  

where α is the weight, and β is the bias from the origin. 
In Fig. 6(a), most red triangle points are located near the x-axis, y- 

axis, or z-axis. These points are outside the dashed red line. By contrast, 
most blue star points are located inside the dashed red lines. This means 
that if data of VarTTH

01 , VarTTH
02 , and VarTTH

03 in (8) are less than zero, then 
the CU is classified as TTH. Otherwise, it classified as TTV. Distributions 
in Fig. 6(b) have the opposite distributions to Fig. 6(a). For simplifica
tion, we use the same equation and parameters in (8). In Fig. 6(b), most 
blue star points are located near the x-axis, y-axis, or z-axis. These points 
are outside the dashed red line. By contrast, most red triangle points are 
located inside the dashed red line. If value of VarTTV

01 , VarTTV
02 , and VarTTV

03 
in (8) are less than zero, then this CU is classified as TTV; otherwise it is 
classified as TTH. From the experimental data, the bias β is set at 1 ×
105, and the weight α is set at 1 × 10− 5. 

The proposed feature analysis method is used to determine hori
zontal or vertical split for BT and TT partition, respectively. Data of 
VarBTH

01 and VarBTH
02 , as well as VarBTV

01 and VarBTV
02 in (7) are for BTH and 

BTV split determination. Using (7) for BT split determination, three 
conditions may result. The first condition is that both equations are less 
than zero. This condition represents that variances in both x-axis and y- 
axis are small; this CU is located near the original point as shown in 
Figs. 5 and 6. It means that this CU has a low likelihood of choosing BT 
partition and can skip horizontal and vertical split decision by RDO. The 
second condition is that only one direction (either vertical or horizontal) 
has high variance value. This condition represents that this CU is located 
near the x-axis or y-axis as shown in Figs. 5 and 6. It means that this CU 
has a high chance to be determined as requiring vertical (or horizontal) 
split. The third condition is that variances in both directions are high. 
This CU is located inside the dashed red line as shown in Figs. 6 and 7. 
Under this condition, the proposed feature analysis method fails to 
determine this CU partition, and this CU split decision has to use CNNs 
for classification. 

Data of VarTTH
01 , VarTTH

02 , and VarTTH
03 , as well as of VarTTV

01 , VarTTV
02 , and 

VarTTV
03 , in (8) are for TTH and TTV split determination. Three conditions 

may occur in TT classification by using (8) for determination. Similar 

Fig. 6. Variance distributions of TT.  
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analysis procedure to BT partition can be applied for TT partition. 
Fig. 7 plots the flow chart for determination of vertical and hori

zontal splits for MTT (either BT or TT) coding structure based on the 
proposed feature analysis method. In particular, from our later 

experiment results, most 32 × 32 CUs are under conditions (1) and (2). 
The small amount of CUs under condition (3) used CNNs for classifica
tion, and this can reduce the input loading of CNNs. 

Fig. 7. Flow chart of the feature analysis method.  

Fig. 8. Proposed CNNs structure.  
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B. 4 Convolution neural networks for classification 

CNNs are used to determine those undetermined MTT (either BT or 
TT) partitions as discussed in the previous subsection. For each QP, 
image content for prediction coding may be changed. The prediction 
coding may be changed under different QP setting; so, four different 
CNNs models are required under different QPs (22, 27, 32, and 37). 
Training data are from CPIH database [27]. To reduce the correlation of 
labels in CNNs classification, 32 × 32 CU image blocks at increased 
intervals are selected for training. Thus, more test sequences are selected 
for labeling, including sequences with sizes of 768 × 512, 1536 ×
1024, 2880 × 1920, and 4928 × 3264 from CPIH database. These 

sequences are first encoded by VVC intra coding. Then, from the enco
ded result, those CUs with 32 × 32 pixels, and determined by RDO to be 
MTT partitions, are extracted. These extracted 32 × 32 CUs are then 
transformed into 4 × 4 feature maps as input data to CNNs. In other 
words, image data are classified into two categories, i.e. BTH, and BTV, 
(or TTH, and TTV). This work adopts supervised learning, and two 
categories of images data are used for CNNs labeling. After some expe
rience with training the CNNs model, the following procedure was found 
to improve the accuracy of CNNs performance. That is, BT image data 
were first used to train the neural networks model, and then TT image 
data were used to update the trained neural networks model. The same 
CNNs model are used for BT and TT split decisions. CNNs classify the 
vertical or horizontal split from MTT partition of a 32 × 32 CU. After 
classification, the split result is sent back to VTM, and VTM continues the 
remaining procedures of intra coding. 

Proposed CNNs structure is plotted in Fig. 8, including one convo
lution layer, four dense block layers, and one classification layer. The 
lost function is cross entropy with L2 regulation, expressed by (9), 

Ly′ (y) =
1
n

[

−
∑n

i=1
y′

ilog(yi)

]

+α
∑

w
w2 (9)  

where y′ is the prediction probability, expressed by y′

i(x) =
softmax(x)i =

exp(xi)

j
∑

exp(xj)
. L2 is regularization, where w is the kernel, and α 

is the parameter of weight decay. 
Input data to CNNs are a matrix with dimension 4 × 4, composed of 

16 4 × 4 feature maps. The feature map is a 8 × 8 pixels conversion, 
which can reduce heavy calculations by CNNs [29].Sixteen 4 × 4 feature 
maps equals 32 × 32 pixels of a CU. The first convolution layer of CNNs 
is applied as a 3 ×3 kernel with stride 1. After the first layer of convo
lution, 16 4 × 4 feature maps can be transformed into 32 4× 4 output. 
The remaining 4 convolution layers and dense blocks refer to [28]. Using 
dense blocks can avoid the vanishing gradient problem. Batch normal
ization is achieved by re-centering and re-scaling to make the neural 
networks faster and more stable through normalization of the layers’ 
inputs [30]. 

Fig. 8 shows that the dense net connects each layer to every other 
layer in a feed-forward fashion. For each layer, the feature maps of all 
preceding layers are used as inputs, and its own feature map is used as 
input into all subsequent layers [28]. After 4 dense layers, average 
pooling is used to remove noise points. Finally, 64 dimensions of full 
connections are employed for classification and the final classification 
result is sent to the output layer. 

The main hyper-parameters of proposed CNNs are listed in Table 2. 

Note that the dropout is used to avoid overfitting in the training process. 
To increase the accuracy of validating, the dropout is omitted in the 
validating process. 

3. Experimental results 

Experiments are designed to demonstrate the performance of the 
proposed algorithms. Experiment environment is listed as follows. For 
training, the CPU is i7-9700@3.6 GHz, the RAM is 64GM, the GPU is 
RTX 2080, and the OS is Ubuntu-X64 18.04. For validating, the CPU is 
i7-6700 @3.4 GHz, the RAM is 24GM, and the OS is Windows 10-X64. 
The software of CNNs is Python 3.6 and the neural network took is 
Tensorflow 1.12.0. Reference software is VTM version 7.0 [31], and all 
intra configuration is used. Test sequences refer to common to test 
conditions (CTC) of VVC [32]. 

Table 3 lists the accuracy of CNNs under different QP settings. 
Training data are approximately 1 ×105 image blocks, and validation 
data are approximately 1 ×104 image blocks. The training procedure is 
separated into two steps. The first step is to train a CNNs model for BT 
partition, and the second step is using the already trained CNNs model to 
build another CNNs model for TT partition, thus the two-step procedure 
to build CNNs models is more achievable. More 32 × 32 CU image 
blocks are used for labeling in BT partition than labeling in TT partition 
because the former requires more data to start a new CNNs model. About 
60% of image blocks are for BT partition training, and about 40% for TT 
partition training. For BT/TT partition, the number of image blocks used 
for labeling the horizontal split or vertical split are almost equal. Table 3 
demonstrates the ratio between the training data and validating data is 
about 10:1 because the two-step training process is applied. Average 
accuracy from four CNNs models is 72.2%. In other words, 28.8% of 
classifications by CNNs may be wrong. The dropout procedure is not 
applied in the validating process, and this may result in the validating 
performance having higher accuracy than the training performance. 

Table 4 lists performances of the feature analysis method. About 70% 
(from 59% to 78%) of 32 × 32 CUs use the feature analysis method. In 
other words, only about 30% of CUs use CNNs for classification, which 
greatly reduces loading, and also reduces the impact on video quality 
drop by misclassification of CNNs. Table 4 indicates that as QP setting 
decreases, the percentage of using feature analysis method increases. 
This is because more details of image content can be preserved for lower 
values of QPs, and the variance differences between sub-CU blocks are 
more significant. Images using feature analysis method at QP 37 are 1.27 
times of images at QP 22. 

Table 4 also lists bit rate difference and PSNR difference compared to 
original VVC performance. Average bit rate increases about 0.5% and 
average PSNR drops about 0.02% by using the feature analysis method 
alone. The percentages of BT and TT in Table 4 show the percentages of 
32 × 32 CUs that applied the feature analysis method for classification, 
respectively. This performance is good because about 70% of BT/TT 
applied the feature analysis method, and about 30% of BT/TT applied 
the CNNs for horizontal/vertical split determination. Furthermore, as 
QP increases, the number of CUs using the feature analysis method in
creases. So, the bit rate increases and the PSNR performance drops more. 

Performance of proposed methods and performance comparisons 
with state-of-the-art works [14] are listed in Table 5. The Bjøntegaard 
delta bit rate (BDBR) is calculated based on [33]. Reduction of coding 

Table 2 
Hyper-parameters of proposed CNNs.  

Batch size 64 

Learning rate 0.0001 
Epochs 60 
Dropout 0.75 
Weight decay 0.005  

Table 3 
Performance of CNNs.   

Number of data Accuracy (%) 

QP Training Validating Training Validating 

37 103,164 10,000  70.1  71.4 
32 100,782 10,000  69.8  72.7 
27 93,998 10,000  69.6  72.8 
22 88,018 10,000  68.6  71.7  
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time by the proposed method is calculated by (10), 

ΔT =
1
4
∑

QP

TR(QP) − TC(QP)
TR(QP)

× 100% (10)  

where TR(QP) and TC (QP) are coding time of VVC reference software 
and proposed method, respectively. Four QPs are 22, 27, 32, and 37. 
Table 5 shows that the proposed method can save about 28.94% of 
coding time and BDBR increases about 0.83%. The ratio of time saving 
per BDBR (TS/BDBR) is about 34.7. For feature analysis method alone, 
about 10% of coding time can be saved and BDBR increases about 0.07. 
In other words, the feature analysis method results in little video quality 
loss. Analysis of BDBR performance of each test sequence, in general, 
shows that sequences with complex content, such as Class_B BQTerrace, 

Class_C PartyScene, and Class_D BlowingBubbles and RaceHorses, can 
maintain better video quality. The reason for this can be explained as 
follows. Table 5 shows that about 70% of 32 × 32 CUs use feature 
analysis method for split decision, and this method can maintain high 
video quality. Most 32 × 32 CUs with complex content are from these 
sequences and use feature analysis method, so, their BDBR performance 
drops less. 

Fan. et al. used the variance of variance to determine the best choice 
among 5 coding structures (QT, BTH, BTV, TTV, and TTH) [14]. By 
contrast, this work proposed a two-step algorithm to determine the 
BTH/BTV or TTH/TTV, which combined statistical feature analysis 
methods and the CNN classification methods. Both methods are applied 
in all intra configuration of the same version of VTM. Although the 

Table 4 
Performance by feature analysis method.  

Class Sequence QP Proportion of BT (%) Proportion of TT (%) Δ Biterate (%) Δ PSNRyuv (%) 

B BQTerrace 22  15.99  16.36  0.06  <0.01 
27  32.48  33.98  0.36  <0.01 
32  37.02  39.99  0.54  − 0.02 
37  39.39  44.26  0.96  − 0.04 

C PartyScene 22  6.03  6.48  0.06  <0.01 
27  9.06  10.12  0.09  <0.01 
32  14.92  16.84  0.21  0.01 
37  26.65  31.23  0.57  0.01 

RaceHorsesC 22  40.74  42.02  0.30  0.01 
27  43.42  44.68  0.23  − 0.01 
32  45.23  47.26  0.39  − 0.01 
37  49.38  52.74  0.69  − 0.01 

D BlowingBubbles 22  7.18  7.33  − 0.04  − 0.01 
27  12.82  12.97  0.10  0.01 
32  25.27  25.71  0.30  0.01 
37  45.86  47.84  0.99  0.03 

RaceHorses 22  18.68  19.56  0.09  <0.01 
27  21.68  22.49  0.15  0.01 
32  33.41  34.80  0.42  0.01 
37  46.52  49.52  0.48  − 0.03 

E Johnny 22  27.33  30.26  0.63  − 0.01 
27  24.55  27.98  0.73  − 0.02 
32  24.70  28.91  1.32  − 0.04 
37  24.84  29.57  1.26  − 0.13 

KristenAndSara 22  39.55  41.17  0.62  − 0.01 
27  36.36  38.29  0.77  − 0.03 
32  33.87  36.10  0.73  − 0.07 
37  29.39  31.91  0.77  − 0.14 

All class average 22 22.21  23.31  0.25  − 0.01 
27 25.77  27.22  0.35  − 0.01 
32 30.63  32.80  0.56  − 0.02 
37 37.43  41.01  0.82  − 0.04  

Table 5 
System performance and comparison.  

Class Sequence [7] (QTMT/ VTM-7.0) Proposed algorithm (QTMT/ VTM-7.0) 

CNN off Overall 

BDBR (%) ΔT (%) TS/BDBR BDBR (%) ΔT (%) TS/BDBR BDBR (%) ΔT (%) TS/BDBR 

B BQTerrace  1.08  45.30  41.94  0.08  8.60  111.76  0.58  30.24  52.58 
Cactus  1.84  52.44  28.50  0.08  6.68  81.78  0.81  30.11  37.24 
BasketballDrive  3.28  59.35  18.09  0.06  7.61  128.17  1.79  33.78  18.89 

C BasketballDrill  1.82  48.48  26.64  0.21  10.32  65.42  0.92  29.93  32.49 
BQMall  1.87  52.47  28.06  0.07  15.73  212.57  1.09  32.63  29.94 
PartyScene  0.26  38.62  148.54  0.06  13.68  234.33  0.22  25.55  117.55 
RaceHorsesC  0.88  49.05  55.74  0.04  11.54  262.27  0.45  31.64  70.31 

D BasketballPass  1.95  47.70  24.46  0.02  10.32  443.68  1.13  29.19  25.90 
BQSquare  0.19  31.95  168.16  < 0.01  7.62  > 999.99  0.08  19.95  264.82 
BlowingBubbles  0.19  40.35  85.85  0.02  6.10  305.00  0.23  23.93  119.96 
RaceHorses  0.54  41.69  77.20  0.02  13.31  605.00  0.28  30.95  111.35 

E FourPeople  2.70  57.57  21.32  0.11  12.28  116.43  1.27  28.83  22.23 
Johnny  3.22  56.88  17.66  0.05  8.59  162.64  1.53  31.88  22.22 
KristenAndSara  2.78  55.11  19.82  0.06  7.74  138.87  1.29  26.50  20.41 

All class average 1.61  48.35  29.95  0.07  10.01  147.85  0.83  28.94  34.71  
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method in Fan. et al. [14] can save more coding time, the video quality 
drops more compared with the proposed method. Table 5 shows that for 
most of the test sequences, the proposed method has better TS/BDBR 
performance than that by the method of [14]. 

4. Conclusion 

This work proposes fast algorithms to determine MTT vertical or 
horizontal split decisions on 32 × 32 CUs from VVC intra coding. A two- 
step method is proposed. The first step is the feature analysis method. By 
using feature map conversion and calculating variances, most 32 × 32 of 
CUs can be classified with little coding gain lost. The remaining unde
termined CUs are classified by CNNs, the second step in the method. 
From experiment results, about 70% of 32 × 32 CUs use the feature 
analysis method, which can maintain high video quality. The proposed 
algorithms take advantage of existing methods but combines them in a 
novel way. Improving the CNNs performance is a topic for future work, 
including the accuracy of classification, the compatibility with VTM, 
and the number of models. 
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[10] S. De-Lux́an-Herńandez, V. George, J. Ma, T. Nguyen, H. Schwarz, D. Marpe, T. 
Wiegan, An intra subpartition coding mode for VVC, in Proc. IEEE Int. Conf. Image 
Processing (ICIP), Taipei, 2019. 

[11] L. Zhao, X. Zhao, S. Liu, X. Li, J. Lainema, G. Rath, F. Urban, F. Racapé, Wide 
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