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Behavior Recognition Using Multiple Depth Cameras
Based on a Time-Variant Skeleton Vector Projection

Chien-Hao Kuo, Pao-Chi Chang, and Shih-Wei Sun, Member, IEEE

Abstract—User behavior recognition in a smart office environ-
ment is a challenging research task. Wearable sensors can be used
to recognize behaviors, but such sensors could go unworn, mak-
ing the recognition task unreliable. Cameras are also used to rec-
ognize behaviors, but occlusions and unstable lighting conditions
reduce such methods’ recognition accuracy. To address these prob-
lems, we propose a time-variant skeleton vector projection scheme
using multiple infrared-based depth cameras for behavior recog-
nition. The contribution of this paper is threefold: 1) The pro-
posed method can extract reliable projected skeleton vector fea-
tures by compensating occluded data using nonoccluded data; 2)
the proposed occlusion-based weighting element generation can
be employed to train support-vector-machine-based classifiers to
recognize behaviors in a multiple-view environment; and 3) the
proposed method achieves superior behavior recognition accuracy
and involves less computational complexity compared with other
state-of-the-art methods for practical testing environments.

Index Terms—Behavior recognition, skeleton, joint, multiple
cameras, depth camera, Kinect.

I. INTRODUCTION

B EHAVIOR recognition for human subjects moving in an
indoor environment such as an office has become increas-

ingly crucial in recent years. For example, Zenonos et al. [1]
proposed the use of wearable sensors and smartphones to recog-
nize human behaviors and thereby monitor the health of office
workers, which could ultimately reduce the cost to government
of work-related stress, anxiety, and depression. Once the behav-
ior or mood of a human subject can be recognized in a smart
office environment, a proper response from a server can be sug-
gested to a user. For example, Sun et al. [2] proposed a smart
living space that allows users to enter using an RF-ID card,
recognizes facial expressions using a static camera, and gauges
users’ mood using a heart-rate sensor on their smart watch, as il-
lustrated in Fig. 1. Once the expression and external behavior of
a user can be recognized, corresponding audiovisual responses
can be made accordingly. For example, when a user enters the
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Fig. 1. Smart office scenario proposed by Sun et al. [2]: (a) facial expression
recognition, (b) heart rate measurement using smart watch with built-in app,
(c) audiovisual response from server, and (d) “open” gesture is recognized by
the system and the drawer is opened by a servo motor controlled by the smart
office server.

smart living space for the first time, the system can automati-
cally display a map and highlight the user’s physical location
using an Arduino control board within the Internet of Things
(IoT) environment.

During the development of a smart living space [2] , cameras
are one of the most critical sensors for human behavior recog-
nition, and their use may obviate the necessity of users wearing
or bringing sensor devices, thus leading to a natural and undis-
turbed user experience. Wearable sensors can precisely measure
the internal state of a user, but once the smart watch or mobile
device containing the sensors has been set aside by the user, they
are unable to correctly recognize behaviors. Behavior recogni-
tion using camera devices also has drawbacks, with recognition
becoming extremely challenging under changing lighting con-
ditions or occlusions to the field of view. In this paper, we
propose a time-variant skeleton vector projection scheme us-
ing multiple depth cameras for behavior recognition in a smart
office environment; the proposed scheme avoids common recog-
nition system drawbacks such as users forgetting to wear their
wearable sensors and object occlusion within camera-based ap-
proaches. The contribution of the proposed method is threefold:
1) The proposed time-variant skeleton vector projection involv-
ing multiple cameras and a classifier training process can recog-
nize human behaviors by using information from non-occluded
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views to compensate for the occluded views; 2) the proposed
occlusion-based weighting element generation process im-
proves behavior recognition accuracy by analyzing the number
of joints whose position is precisely known because no occlu-
sion occurred; and 3) compared with state-of-the-art methods,
the proposed method achieves higher recognition accuracy at
a lower computational cost. The remainder of this paper is or-
ganized as follows. In Section II, related studies on behavior
recognition are reviewed. The proposed method is described in
detail in Section III, and the experimental results are presented
in Section IV. Finally, Section V provides the conclusion.

II. RELATED WORK

Existing methods for recognizing behavior in a smart office
environment can be classified into four categories: wearable
sensor, joint-based camera, partly camera-based, and multiple-
camera approaches.

Wearable sensor techniques recognize behaviors by measur-
ing the inertial signals of users. Zenonos et al. [1] used wearable
sensors and smartphones to extract heart rate, acceleration, tem-
perature, and pulse rate and train mood classification models
to recognize the mood of users, gathering the information in
a healthy office app that can improve an office’s working effi-
ciency. Sprint et al. [3] proposed the collection of sensor data
from indoor environments for use in activity recognition by de-
tecting behavior change. To recognize human activities, Shen
et al. [4] proposed the use of smartphone motion sensors and
Lee et al. [5] used a user’s smartwatch and smart belt for be-
havior recognition. To understand a user’s movement, Sun et al.
[6] built a pressure sensing system using fiber-optic sensors
mounted on the floor and a space encoding process, statisti-
cal modeling, and mixture learning. Human activities (walking,
working, resting, and talking) can be recognized in an indoor
office environment within an 8 × 8 block area. However, one of
the mounted sensors can only respond with a binary result for
a user’s occupancy with limited spatial precision. Pham et al.
[7] used an inertial measurement unit for motion data collec-
tion and distributed passive infrared sensors for human activity
recognition, localization, and tracking. Tao et al. [8] employed
wireless sensor networks from acceleration sensor signals for
human behavior recognition. Tan and Yang [9] proposed the use
of Wi-Fi signals to recognize user gestures. However, pressure
sensors, fiber-optic sensors, passive infrared sensors, and Wi-Fi
signals, as used in the aforementioned studies, only provide a
rough estimation of a user’s location and behavior recognition
requires much higher spatial precision. Additionally, if a user
forgets to wear their sensing device, any behavior recognition
results will be incorrect.

Joint-based camera approaches utilize the geometrical rela-
tionships among the analytical joints of the body determined
using motion capture (MoCap) or depth cameras. Lv and Neva-
tia [10] used the 3D positions of multiple joints as features and
applied hidden Markov model (HMM) [11] weak classifiers in
AdaBoost [12] to boost the classifiers in a single-MoCap-device
environment. To utilize temporal information, Sheikh et al. [13]
proposed the use of 4D space (with time as the fourth dimension)

to recognize actions using joint angles in a MoCap environment.
Employing the angular relationships among joint vectors, Hus-
sein et al. [14] proposed a 3D joint covariance descriptor with
the linear support vector machine (SVM) classifier for recogniz-
ing actions using a Kinect depth camera. By adopting MoCap
and a Kinect depth camera, Wang et al. [15] extracted 3D joint
features and used local occupancy patterns to generate spa-
tial histograms for behavior recognition, using LIBSVM [16],
a library for SVMs, to train the classifiers. By modeling the
observed spherical coordinates of joints, Xia et al. [17] used
linear discriminant analysis, vector quantization, and a discrete
HMM to recognize behaviors. Yang and Tian [18] proposed the
EigenJoints method based on a principal component analysis
for behavior recognition. Furthermore, Zhu et al. [19] adopted
multiple spatiotemporal features [20]–[23] and skeleton joint
features [18] for feature quantization, and a random forest algo-
rithm [24] was used for feature fusion and action classification
in a Kinect camera environment.

Partly camera-based approaches use the relationships be-
tween skeleton data and multiple joint sets for behavior recog-
nition. Chaudhry et al. [25] utilized connectivity relationships
among multiple joint locations to generate shape context fea-
tures [26] and optimal multiple kernel learning weights [27] to
generate SVM classifiers in an environment with a single Mo-
Cap and Kinect depth camera. To observe how 3D joint locations
change with time, Ofli et al. [28] proposed a method of measur-
ing the Levenshtein distance [29] between joints, which can then
be used to train classifiers. To analyze depth information around
the joints, Ohn-Bar and Trivedi [30] proposed a histogram of
oriented gradient-based [31] method for training classifiers. Us-
ing four joints for behavior recognition, Evangelidis et al. [32]
proposed a skeletal quads method using a Gaussian mixture
model and Fisher score [33] to generate feature vectors. For
modeling temporal information for behavior recognition, Vem-
ulapalli et al. [34] adopted Lie algebra for mapping joints in the
spatiotemporal vector space and generating SVM classifiers. In
all the aforementioned joint-based or partly camera-based ap-
proaches, however, partial and self-occlusion reduces behavior
recognition accuracy.

Recently, multiple-camera environment approaches have be-
gun to be used for behavior recognition. Azis et al. [35] used
fused skeleton data from two cameras, and a nearest-neighbor
dynamic time warping method was adopted for behavior recog-
nition in a two-Kinect-camera environment. Furthermore, the
same research group proposed a weighted averaging fusion algo-
rithm [36] for generating a multiview skeleton including 3D joint
positions, pairwise joint distances, and histogram of cubes [35],
which can be used as features to generate behavior classifiers.

The method proposed in this paper avoids issues of incon-
venience regarding wearable sensors and also overcomes prob-
lems regarding occlusions that occur in joint-based and partly
camera-based approaches. The method proposed herein
achieves behavior recognition using a multiple-camera environ-
ment, compensating for occluded views using the other cam-
era’s non-occluded view. The training data obtained from the
multiple views are properly analyzed to achieve high behavior
recognition accuracy with low computational complexity.
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Fig. 2. Example joints and skeletons detected using Kinect SDK [37] and the
corresponding measurements: (a) joints on human skeleton; (b) height measure-
ment (red arrow) and the position of the head relative to the hip center joint
(purple dashed arrow); (c) joints of p1 , (d) joints of p2 .

III. TIME-VARIANT SKELETON PROJECTION

Before behavior recognition can be attempted, skeleton joint
data are obtained from the official Microsoft Kinect SDK 1.8
[37]. Each joint is represented by its real 3D position. For exam-
ple, the top of the head jh

t = (xh
t , yh

t , zh
t ) (the top joint displayed

in Fig. 2), obtained from the Kinect SDK, represents the physi-
cal position detected in the depth camera’s field of view of the
head point jh

t at time t. When a behavior is performed by a
user, the skeleton data are extracted from multiple views - for
example, the center, right, and left views - which are recorded
from consecutive frames, as illustrated by Behavior 1 on the
left-hand side of Fig. 3 (wherein joints and skeleton are obtained
from the three views mentioned). The skeleton data are analyzed
based on the proposed relative joint positions using a normal-
ization process, basis vector generation, projection from a joint
vector onto the basis vectors, and behavior classifier training,
all of which are described in detail in the following sections and
are represented by blocks in the central part of Fig. 3. In addi-
tion, the behavior features (right-hand side of Fig. 3) obtained
from multiple views are further used for classifier training and
behavior recognition.

A. Relative Joint Position With a Normalization Process

To deal with situations involving human subjects with dif-
ferent heights, which are inevitable in real applications of

Fig. 3. Process for extracting features from skeleton data obtained from
multiple-view depth cameras and the feature vector modeling process.

the method, a body height normalization process is neces-
sary. As shown in Fig. 2(b), at time t, given the positions of
the right foot joint jf r

t = (xf r
t , yf r

t , zf r
t ) and left foot joint

jf l
t = (xf l

t , yf l
t , zf l

t ), a middle foot joint can be defined by tak-

ing their average: jf m
t = (j f r

t +j f l
t )

2 . Furthermore, given the po-
sition of the head point jh

t = (xh
t , yh

t , zh
t ), the height of a subject

can be measured by calculating the Euclidean distance from the
head point jh

t to the middle foot joint jf m
t :

ht = d
(
jh
t , jf m

t

)

=

√(
xh

t − xf m
t

)2
+

(
yh

t − yf m
t

)2
+

(
zh

t − zf m
t

)2
,

(1)
which is depicted by the red line segment in Fig. 2(b). Taking
the hip center joint jhc

t [the purple circle in Fig. 2(b)] as the
origin point of a relative coordinate system, the relative position
of the head point normalized by the body height ht :

j′ht =

(
jh
t − jhc

t

)
ht

=

(
xh

t − xhc
t , yh

t − yhc
t , zh

t − zhc
t

)
ht

, (2)

can be calculated and is illustrated by the purple dashed line
in Fig. 2(b). The relative positions of the rest of the joints can
be similarly obtained. Hereafter, a prime symbol on a joint
position is used to represent a normalized relative position;
for example, j′ht represents the relative position of the head
point jh

t with respect to the hip center jhc
t [the purple dashed

vector in Fig. 2(b)], normalized by ht [the red line segment
in Fig. 2(b)].

Even if users have different heights, as illustrated in Fig. 2(c)
for the joints belonging to person p1 and Fig. 2(d) for person
p2 , the calculated (j′ht )p1 ≈ (j′ht )p2 . Therefore, the proposed
relative joint positions obtained through normalization can be
treated as a user-invariant (regardless of users’ height) feature.

B. Basis Vectors Generation

Given the relative positions of the right shoulder joint j′sr
t

and left shoulder joint j′sl
t [Fig. 2(a)], a shoulder vector

−→
St =

−−−−→
j′sr
t j′sl

t can be obtained, as illustrated by the green ar-
row in Fig. 4(a). Given the relative position of the foot middle

joint j′f m
t , a foot vector

−→
Ft =

−−−−−→
j′sr
t j′f m

t can also be obtained
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Fig. 4. Basis vector generation: (a) shoulder, foot, and normal vectors; (b) the
obtained representative basis vectors; (c) the basis vectors at time t1 ; (d) basis
vectors at time t2 ; (e) basis vectors in a real test at time t3 ; and (f) basis vectors
in a real test at time t4 .

[red arrow in Fig. 4(a)]. A normal vector
−→
Nt :

−→
Nt =

−→
St ×−→

Ft, (3)

can subsequently be calculated from the outer product of
−→
St

and
−→
Ft . Notably,

−→
Nt is orthogonal to

−→
St and

−→
Ft . Therefore, the

vectors
−→
Nt ,

−→
St , and

−→
Ft are treated as the basis vectors [Fig. 4(b)].

At time t = t1 , a set of basis vectors {−→Nt1 ,
−→
St1 ,

−→
Ft1 } is obtained

[Fig. 4(c)], whereas at time t = t2 , another set of basis vectors
{−→Nt2 ,

−→
St2 ,

−→
Ft2 } is obtained [Fig. 4(d)]. Thus, the obtained basis

vectors are time dependent. For example, the basis vectors are
different at times t3 and t4 because of the different postures
assumed by the user. Hence, the proposed set of time-variant
basis vectors –

−→
Nt ,

−→
St , and

−→
Ft – can be applied for further

feature description.

C. Projection of Joint Vector Onto the Basis Vectors

Given a right hand joint j′hr
t and right shoulder joint j′sr

t ,

a hand joint vector
−→
Ht =

−−−−→
j′sr
t j′hr

t can be obtained [blue ar-
row in Fig. 5(a)]. The geometric relationship between the hand
joint vector

−→
Ht and basis vectors

−→
Nt ,

−→
Ft , and

−→
St is depicted

in Fig. 5(b). The projections of
−→
Ht onto the basis vectors−→

Nt ,
−→
Ft , and

−→
St are defined as ‖−→Ht‖ cos α, ‖−→Ht‖ cos β, and

‖−→Ht‖ cos γ, respectively. The norms ‖−→Nt‖, ‖−→Ft‖, and ‖−→St‖ of
the basis vectors can be substituted into these expressions to
give ‖−→Nt‖‖−→Ht‖ cos α, ‖−→Ft‖‖−→Ht‖ cos β, and ‖−→St‖‖−→Ht‖ cos γ,

Fig. 5. Joint vector projections: (a) the indexes used for joints and the basis
vectors; (b) the geometric relationships among the hand joint vectors and the
basis vectors.

respectively. The derived expression

fN
t = ‖−→Nt‖‖−→Ht‖ cos α =<

−→
Nt,

−→
Ht >, (4)

fF
t = ‖−→Ft‖‖−→Ht‖ cos β =<

−→
Ft,

−→
Ht >, (5)

fS
t = ‖−→St‖‖−→Ht‖ cos γ =<

−→
St ,

−→
Ht > . (6)

Therefore, for a given joint, the feature vector at time t is defined
as

ft = [fN
t , fF

t , fS
t ]. (7)

The index i is used to represent the different joints of a human
subject, and fi

t is used to represent the feature vectors belonging
to the ith joint. Thus, the complete set of features is represented
as

φt =

⎡
⎢⎢⎢⎢⎣

fi=1,N
t f i=1,F

t f i=1,S
t

f i=2,N
t f i=2,F

t f i=2,S
t

· · · · · · · · ·
fi=20,N

t f i=20,F
t f i=20,S

t

⎤
⎥⎥⎥⎥⎦

, (8)

where the indexes i = 1, . . . 20 are depicted in Fig. 5(a).
Over a specific period, the 3D position of each joint can be

tracked. Fig. 6 illustrates the spatiotemporal domain information
for different joints, wherein the z-axis (depth) is ignored for
display convenience. The right hand joint (green circles, i =
12) is seen to move in large motions, but the right elbow (pink
circles) and left ankle (red circles) move little. The 3D positions
of the joints are defined by the proposed basis vector projections.
An example of the complete set of features [(8)] is depicted in
Fig. 7. The orange circles depicted at t = 1 are the projection
vectors of all the joint vectors (i = 1, . . . i = 20) onto the basis
vector

−−−→
Nt=1 , which are defined as fi=1,N

t=1 . . . f i=20,N
t=1 , [i.e., the

first column vector of (8)]. Similarly, the red and green circles
represent the projection vectors onto the basis vectors

−−→
Ft=1

and
−−→
St=1 , and they are the second and third column vectors in

(8), respectively.
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Fig. 6. Positions of the selected joints as detected by one of the multiple
cameras in the spatiotemporal domain.

Fig. 7. Illustrative example of (8) for t = 1, . . . T .

Given an obtained feature φt,c at camera c in a multiple-view
environment, a feature set φT ,c = [φt=1,c , φt=2,c , · · · , φt=T ,c ]
can be obtained over a period T . Moreover, the features obtained
from multiple views are concatenated, a cross-view feature can
be obtained:

ΦT = [φT ,c=1 , φT ,c=2 , · · ·φT ,c=C ], (9)

where C is the number of cameras. The feature vectors found
using (9) are depicted on the right-hand side of Fig. 3.

D. Behavior Classifier Training

Once the feature vectors from multiple views are obtained
(examples of which are illustrated in Fig. 7), LIBSVM [16] is
adopted for generating the classifiers for different behaviors in
a multiple-view environment. For example (Fig. 8), the spa-
tiotemporal features of Behavior 1 can be extracted from the
multiple views of the depth cameras (in this example, the center,
right, and left views), and the salient spatiotemporal features can
then be selected from the pool of trajectories (set of curves in
Fig. 9). The variance of each trajectory along the time axis is
calculated and trajectories with variances larger than a threshold
vT (such as the bolder curves in Fig. 9) are kept as the salient
spatiotemporal trajectories. Notably, the trajectories presented
in Fig. 9 operate in the feature domain [i.e., (8)], not in the
physical spatiotemporal domain.

Next, the adaptive weighting factors are calculated according
to the occlusion situation analyzed from multiple views. Fig. 10

Fig. 8. Training of behavior classifiers using the features extracted from mul-
tiple views.

Fig. 9. Proposed trajectory filtering process, with plots of 20 joints projected
on one of the basis vectors in the spatiotemporal feature domain; the three
filtered feature trajectories are presented in bold.

Fig. 10. Captured depth camera data: (a) color frames; (b) depth frames with
subjects detected; and (c) the resultant skeletons and basis vectors.

illustrates an example gesture (raised right hand) that can be
observed from views c1 and c2 but not c3, in which it is oc-
cluded by the user’s body. In the behavior classifier training,
therefore, the views in which occlusion does and does not occur
have different weights. In this paper, we propose an occlusion-
based weighting element generation process that assesses the
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Fig. 11. Example of the proposed occlusion-based weighting element
generation.

occlusion situation and generates suitable SVM-based behavior
classifier (middle of Fig. 8).

1) Occlusion-Based Weighting Element Generation: During
the detection of skeletons and joints with multiple depth cam-
eras in practice, joints may be occluded by other parts of the
user’s body when a behavior is being performed. In Kinect SDK,
the detected joints are classified into three categories: “tracked,”
indicating a tracked joint that the camera can see; “inferred,”
indicating a tracked joint that the camera cannot see but the po-
sition of which can be estimated by surrounding joint data; and
“not tracked,” indicating the lack of joint data. The “inferred”
and “not tracked” joints are possibly occluded (by the user or
other objects) in the field of view. In Kinect SDK1.8 [37], 20
joints are detected in each frame, and more “inferred” and “not
tracked” joints indicate that there are less “tracked” joints. Thus,
the reliability of a representation is proportional to the number
of “tracked” joints τt,c at camera c. Views with less occlusion
(higher τt,c ) should have a greater effect on the feature gener-
ation process and the following behavior recognition process.
Therefore, through the consideration of the occlusion effects for
different views at different time points, a time-variant weighting
function can be independently defined in terms of the feature
vector:

Φw
T = [wc=1 · φT ,c=1 , wc=2 · φT ,c=2 , · · ·wc=C · φT ,c=C ].

(10)
Equation (10) reveals the effect of occlusions at different time
points. By considering the computational complexity and ac-
curacy in the feature generation and recognition processes, we
propose the designation of the weighting elements as follows:

wc =
τtc∑C

c=1 τtc

, (11)

where τt,c=1 is the number of “tracked” joints in each view.
A three-view example of the proposed weighting elements is
illustrated in Fig. 11. At different time instances, the weights of
the multiple cameras (i.e., c1, c2, and c3,) are determined by the
number of “tracked” joints in the three views.

E. Behavior Recognition

LIBSVM [16] is adopted for classifier training and testing for
behavior recognition (Fig. 8, bottom; Fig. 12, right-hand side).
The proposed feature extraction process using multiple views

Fig. 12. Process of behavior recognition from unknown skeleton data
extracted from multiple depth cameras.

(Fig. 12, upper-left) and the feature trajectory filtering process
(e.g., Fig. 9) are operated for unknown skeleton data. The cal-
culated weight matrix (e.g., Fig. 11) is sent as side information
together with the SVM classifiers ( Fig. 12, right-hand side) so
that the behaviors of a user can be recognized.

IV. EXPERIMENTAL RESULTS

In the experiment, three Kinect v1 depth cameras were used to
capture a user’s behavior with the official Kinect SDK 1.8 [37],
and this served as the raw skeleton data. The Kinect cameras
(two marked by red rectangles in Fig. 10) were mounted at a
height of approximately 1.6 m from the floor. One of the depth
cameras was positioned to capture the front view, and the others
were mounted to capture the two side views. Color frames, depth
frames wherein the subject has been detected, and skeletons
(blue line segments) with joints (blue circles) are presented in
Fig. 10(a)–(c), respectively. Through the proposed method, the
three basis vectors

−→
Nt ,

−→
Ft and

−→
St were calculated using (3) and

are depicted by the orange, red, and green arrows in Fig. 10(c).
Furthermore, the calculated vector projections [through (4), (5),
and (6)] for the three views over a specific period are plotted
in Fig. 13(a) and (b) for Person 1 and Person 2, respectively.
These two sets of vector projections have similar distributions
in the environment with multiple depth cameras. Therefore,
the obtained feature vectors were used to train the classifiers
for behavior recognition. The trajectory threshold, defined in
Section III-D, was empirically determined as vT = 0.02, and
this value was used in all subsequent tests.

Ten behaviors were recorded in the environment for evalua-
tion, with a total of 15,169 frames recorded in 505.63 s, and 10
volunteer users were asked to perform the behaviors (examples
in Fig. 14). The 10 users performed each behavior three times;
therefore, 10 × 30 × 3 = 300 video clips were generated, with
a manual time synchronization process used. Half of the uni-
formly sampled video clips were used as the training dataset
for behavior recognition, and the other half were used as the
testing dataset. The proposed method was compared with other
state-of-the-art methods using the multiple-view test video se-
quences provided by Azis et al. [36] . The performance level of
the proposed method was compared with those of the methods
proposed by Azis et al. [36] (multiple-view approach) and Vem-
ulapalli et al. [34] (partly camera-based single-view approach).
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Fig. 13. Feature vectors among three views for the same behavior as performed
by (a) person 1 and (b) person 2.

Fig. 14. Part of the behavior database recorded with volunteer users. Behaviors
included were the one hand wave (OHW), two hand wave (THW), forward punch
(FP), side punch (SP), forward kick (FK), side kick (SK), bend (BD), hand clap
(HC), high throw (HT), and jog (JG). (a) Ten different behaviors behaved by
three volunteers. (b) Color and depth frames from the three views.

TABLE I
COMPARISON RESULTS OF MEAN AVERAGE PRECISION (MAP)

proposed dataset [36] dataset

Vemulapalli’s method [34], center view 100 ± 0.00% 91.67 ± 10.94%
Vemulapalli’s method [34], right view 93.33 ± 14.74% –
Vemulapalli’s method [34], left view 87.25 ± 14.56% –
Vemulapalli’s method [34], side view – 87.12 ± 17.63%
Azis’s method [36] 86.29 ± 9.34% 85.60 ± 13.12%
Proposed Method 99.33 ± 2.11% 91.68 ± 19.65%

A. Quantitative Evaluation

The mean average precision (mAP) results associated with
the proposed method (multiple-view) and the methods from [36]
(multiple-view) and [34] (partly camera-based single-view) are
compared in Table I. The single-view method [34] was applied
to the frames obtained from each view. Because the center view
is less frequently occluded, the single-view [34] results derived
for the center view were more accurate than the side-view re-
sults. As revealed by the second and third rows of Table I,
occlusions that occurred in the side views resulted in decreased
accuracies of 93.33% (right view) and 87.25% (left view) for the
method of [34], whereas the proposed method achieved the best
mAP of 99.33% when all views were considered.

Nevertheless, a center view cannot always be obtained in
practical applications. Of the two multiple-view approaches,
the proposed method had superior overall performance to the
method of Axis et al. [36] for the proposed dataset. For the more
challenging dataset provided by [36] (Table I), the proposed
method also had the best behavior recognition capability when
compared with the two other methods. The detailed behavior
recognition results for different behaviors are presented through
confusion matrices in Fig. 15. The label of each row in the
confusion matrices is the actual behavior label (i.e., the behavior
that was performed), and the labels at the foot of each column
are the predicted behavior labels. The corresponding element
of the confusion matrix is the number of times the predicted
label was identified by the method divided by the total number
of times the actual behavior was performed in the dataset (such
that the sum of the elements in each row must equal 1). The
last row of Fig. 15(f) corresponds to the “side kick,” which
was incorrectly recognized as other behaviors because only the
front view and one side view could be obtained in the dataset
of [36]. Similar performance degradation was observed when
the method of Axis et al. [36] (multiple-view approach) was
used, as shown by the last row of Fig. 15(d). Therefore, if
information from less-occluded views could be obtained, the
behavior recognition capability of the proposed method would
be improved because the occluded data could be compensated.

B. Qualitative Evaluation

Fig. 16(a) and (c) present depth frames, wherein the subject
has been detected (the first three rows), and skeletons (blue line
segments in the subsequent three rows) obtained using Kinect
SDK; from these, the basis vectors

−→
Nt (orange arrows),

−→
Ft
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Fig. 15. Confusion matrix for the behavior recognition accuracy of Vemula-
palli’s method [34] (single-view), Azis’s method [36] (multiple-view), and the
proposed method (multiple-view). The behavior labels are as listed in the cap-
tion of Fig. 14, and the abbreviations used in the [36] dataset are: hand clapping
(HC), waving both hands (WBH), single hand waving (SHW), punching (PC),
bend forward (BF), forward kick (FK), answering a phone call (AP), sitting
down (SD), and side kick (SK). (a) Vemulapalli’s method [34] from the center
view; (b) Vemulapalli’s method [34] with the front view of the [36] dataset;
(c) Azis’s method [36] using three views; (d) Azis’s method [36] using two
views of the [36] dataset; (e) proposed method using three views; (f) tproposed
method using two views of the [36] dataset.

(red arrows), and
−→
St (green arrows) could be obtained using the

proposed method. For example, the movement of a foot could be
identified from depth frames 1515–1520 in view c1. However,
the foot is occluded by the subject in view c2. The foot joints
marked by the green dashed circles in view c1 in Fig. 16(b)
could be used to reliably determine

−→
Ft (red arrow) in view c1

according to the definition given in Section III-B. Nevertheless,
because of the occlusion of the foot in views c2 and c3, the
obtained

−→
Ft (red arrows) could be erroneous (with the magenta

circles being the “inferred” joints). In the proposed method, the
weights of the joints reduce the effect of the “inferred” joints.
Thus, view c1 could have had higher weighting and relative
angles, as illustrated by the skeleton identified in view c1 in
Fig. 16(a).

Similarly, the raised hand in frame 2341 in Fig. 16(d) is shown
to be more stably tracked in view c1 but severely occluded in

Fig. 16. Time-variant skeleton vector projection for a foot/hand movement
behavior. (a) Depth frames 15151520 (foot movement) from views c1, c2,
and c3, and the corresponding skeletons; (b) skeletons obtained from frame
1517: blue and magenta circles are the tracked and inferred joints, respectively.
(c) Depth frames 23412346 (hand movement) from views c1, c2, and c3, and
the corresponding skeletons.
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TABLE II
TIME COMPLEXITY WHEN VEMULAPALLI’S METHOD [34] (SINGLE-VIEW),

AZIS’S METHOD [36] (MULTIPLE-VIEW), AND THE PROPOSED METHOD

(MULTIPLE-VIEW) WERE USED

time (s) proposed dataset [36] dataset

Modeling Classification Modeling Classification

[34] 1673.79 946.63 1727.71 1178.23
[36] 142.40 143.55 139.18 152.94
Proposed 59.48 38.60 21.18 7.46

TABLE III
RESULTS OF THE PROPOSED METHOD WITH DIFFERENT NUMBERS OF VIEWS

USED FOR THE PROPOSED DATASET; MEAN AVERAGE PRECISION (MAP),
MODEL TIME (MT), AND CLASSIFICATION TIME (CT)

used views mAP MT (s) CT (s)

center + right + left (3 views) 99.33 ± 2.11% 59.48 38.60
center + right (2 views) 99.33 ± 2.11% 42.63 27.86
center + left (2 views) 96.00 ± 7.17% 42.98 27.97
left + right (2 views) 90.00 ± 10.06% 42.60 27.78
center (1 view) 98.67 ± 2.81% 18.79 13.21
right (1 view) 85.33 ± 12.09% 20.29 13.80
left (1 view) 78.00 ± 16.35% 20.87 13.68

views c2 and c3. The basis vector
−→
St is correct in view c1 but

erroneously detected in view c2 because of occlusion. In view
c2, the erroneous basis vector

−→
Nt (orange arrow) is due to the

erroneous
−→
St (green arrow). Similar results can be observed in

view c2 for frames 2341–2346. However, the proposed method
could reduce the effect of the erroneous basis vectors because
view c1 had a larger weighting factor.

C. Complexity Comparison

The proposed method (multiple-view), the method of Axis
et al. [36] (multiple-view), and the method of Vemulapalli et al.
[34] (single-view) were executed on the same computer, which
had an Intel Core i7, a 2.67-GHz CPU, and 12Gb of RAM. The
total computational time required for each method with each
dataset is presented in Table II. The previously proposed meth-
ods in [36] and [34] involve dynamic time warping operations
but the proposed method does not and thus requires the least
computational time for its modeling and classification opera-
tions. The proposed method only needs to project the obtained
skeleton vector onto the proposed basis vectors, after which
the weighting factors are determined by any occlusion detected
by the Kinect SDK, which occurs in real time. Therefore, the
proposed method has the potential to be applied in real-time
applications.

In the proposed method, the number of depth cameras used
for the behavior recognition can affect the overall recognition
accuracy. As revealed in the first row of Table III, the mAP was
99.33% when all three views were used in the behavior recog-
nition process. When only two views were used, the mAP was
reduced to 90.00%–99.33%, and the modeling and classification
times were also reduced. Furthermore, when only one view was

Fig. 17. Confusion matrix for the behavior recognition accuracy of the pro-
posed method when two views and a single view were used. (a) center and
right views used; (b) center and left views used; (c) left and right views used;
(d) center view used; (e) right view used; (f) left view used.

used, the mAP was further reduced to 78.00%–98.67%, with
further savings in modeling and classification times. However,
the mAP results were highly correlated with the view selected.
In our tests, the left view included severe occlusions; therefore,
when the left view was selected for behavior recognition using a
single view or two views, the mAP was reduced. Nevertheless,
occlusions can be considered by determining the weighting fac-
tors proposed in (10) in the proposed method. The detailed mAP
results in Table III are also illustrated by the confusion matrices
in Fig. 17.

V. CONCLUSION

In conclusion, the proposed behavior recognition scheme in a
multiple-depth-camera environment recognizes behaviors with
higher accuracy and lower computational complexity than the
state-of-the-art methods of [34] and [36]. The contribution of
this paper is thus threefold: 1) The proposed time-variant skele-
ton projection using multiple views can compensate for oc-
cluded views and identify features reliably; 2) the proposed
SVM-based classifier accurately recognizes behaviors; and 3)
the execution of the proposed method has low computational
complexity compared with the other methods. As revealed in
Table III, the addition of more cameras increases the accuracy
of the method, but using fewer cameras saves computational
power, which could make the method suitable for real-time ap-
plications. Therefore, the proposed method can be adopted in
the future for smart office applications, recognizing user behav-
iors and then triggering corresponding IoT-based applications.
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As illustrated by the example in Fig. 1(d), a smart office may
have different IoT-connected devices such as lights or a servo
motor controlled by an Arduino controller. Once a user’s for-
ward punch gesture (which does not involve physical touch) is
recognized in a multiple-depth-camera environment according
to the method proposed in this paper, the server can automati-
cally turn on the light using a switch and trigger the servo motor
to open a drawer, all controlled by an Arduino controller. In the
future, the proposed behavior recognition scheme using multi-
ple depth cameras can be extended to multiple skeleton-based
devices such as the Kinect v2 and Leap Motion and motion
capture devices.
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