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Abstract This paper proposes a speaker recognition system using acoustic features that are
based on spectral-temporal receptive fields (STRFs). The STRF is derived from physiological
models of the mammalian auditory system in the spectral-temporal domain. With the STRF, a
signal is expressed by rate (in Hz) and scale (in cycles/octaves). The rate and scale are used to
specify the temporal response and spectral response, respectively. This paper uses the proposed
STRF based feature to perform speaker recognition. First, the energy of each scale is calculated
using the STRF representation. A logarithmic operation is then applied to the scale energies.
Finally, a discrete cosine transform is utilized to the generation of the proposed STRF feature.
This paper also presents a feature set that combines the proposed STRF feature with conven-
tional Mel frequency cepstral coefficients (MFCCs). The support vector machines (SVMs) are
adopted to be the speaker classifiers. To evaluate the performance of the proposed speaker
recognition system, experiments on 36-speaker recognition were conducted. Comparing with
the MFCC baseline, the proposed feature set increases the speaker recognition rates by 3.85 %
and 18.49 % on clean and noisy speeches, respectively. The experiments results demonstrate
the effectiveness of adopting STRF based feature in speaker recognition.

Keywords STRF. Speaker recognition . Feature extraction . Speaker authentication

1 Introduction

With the rapid growth of the usages of portable devices, internet of things (IOT) has seen
considerable development. Users may use these devices everywhere, and the problem
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associated with user authentication of these devices is an important issue. Since many devices
can only be accessed after authentication, the repeated input of account information and
passwords is inconvenient for accessing these devices. Therefore, a natural user interface
(NUI) is required to solve this problem. Multi-touch, gesture-based, and speech-based NUIs
are popular nowadays. They depend on devices such as a touch screen, Kinect, and a
microphone to receive and process a signal. Among these NUIs, speech can also be used for
identification because it is a unique biometric. In this work, the biometric characteristics of
speech are used to recognize the user identity.

The two types of the speaker authentication system are - text-dependent [2, 3, 20] and text-
independent [12, 15, 17, 28]. A text-dependent speaker authentication system is similar to
traditional authentication systems of speakers. The speaker passes the system upon speaking
the pre-specified password. A text-independent speaker authentication system models the
acoustic characteristics of a speaker and utilizes the acoustic models to identify speakers.
Since a text-independent speaker authentication system is not limited by text, its use is more
convenient. This work proposes a text-independent speaker recognition system to authenticate
a user.

In a speaker recognition system, audio feature extraction and classifier modeling are the two
main components. Audio feature extraction comes behind the pre-processing stage. Previous
researches have reported various types of audio features include amplitude and power in the
temporal domain, chroma and harmonicity in the frequency domain, and cepstral coefficients
in the cepstral domain. The most frequently used audio features are cepstral coefficients [14].
Cepstral coefficients can be extracted by two different approaches [21]. One is the parametric
approach, which is developed to match closely the resonant structure of the human vocal tract
that produces speech sounds. This approach is mainly based on linear predictive analysis. The
linear predictive coefficients (LPCs) obtained can be converted to LPC cepsral coefficients
(LPCCs). The other approach is non-parametric and models the human auditory perception
system. Mel frequency cepstral coefficient (MFCC) [27] is categorized as the second
approach.

Model classifier also plays an important role in a speaker recognition system. The Gaussian
mixture model (GMM) [10, 18, 31], the support vector machine (SVM) [1, 19, 25, 28], the
neural network (NN) [15, 30], and hybrid of these models [4, 5, 11] are commonly used for
this purpose. A GMM-based recognition system uses a GMM of the probability density
function of a speech signal with Gaussian components. The mean, variance and weights of
the GMM speaker model can be used to recognize a speaker by maximizing the log likelihood.
The SVM is a binary classifier, which makes decisions by finding the optimal hyper-plane that
separates positive from negative data. An SVM can also map the features of a speaker to high-
dimensional space and perform classification. In many works, GMM is combined with the
SVM method to recognize speakers. In the audio signal processing method, a NN usually
replaces GMM, and the NN can train a model for multiple speakers. In this paper, an SVM is
adopted as the classifier.

To make a speaker recognition system more useful, the following two issues are essential to
be considered. The first issue is that natural speech is easy to be copied and a speaker
recognition system can be fooled by using voice conversion software [9]. However, people
seldom whisper, so recording whispered speeches is much more difficult than recording
normal speeches. Awhisper based speaker recognition system is therefore safer than a normal
speech-based speaker recognition system [23]. The second issue is whether a speaker recog-
nition system is robust against background noise. In practical situations, speech utterances
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rarely occur in isolation. The captured speech signal is usually accompanied by environmental
noises which makes impact on speaker recognition performance. In this paper, we address the
second issue and present an audio feature based method to enhance the speaker recognition
performance under noisy environments. The used audio feature is derived based on the theory
of spectral-temporal receptive fields (STRFs).

The STRF multi-resolution analysis in the spectral and temporal domain is a
computational auditory analysis model inspired by psychoacoustical and neurophysio-
logical studies in early and central stages of the mammalian auditory system [8]. This
auditory analysis model consists of two primary stages. The first stage is an early
auditory system that simulates processing at the auditory periphery and produces an
auditory spectrum. The second stage is the primary auditory cortex (A1) model in the
central auditory system, which is based on the assumption that a response neuron area
tuned to a specific range of frequencies and intensities. In recent years, this theory has
been applied to speech recognition research by the work of Woojay et al. [29].
Woojay et al. [29] used STRF theory to propose a new feature selection method that
paralleled the computation of the MFCC. The authors’ previous work [26] discusses
the conception of STRF and reveals that the proposed STRF-based feature can be
used in speech recognition. In this paper, we further exploit the possibility to use
STRF-based feature in speaker recognition under noisy environments. Our work is not
the first attempt to use STRF in speaker recognition. Chi et al. presented a making
based speaker identification algorithm [7]. This algorithm distinguishes speech from
non-speech based on spectro-temporal modulation energies and can enhance the
speaker recognition in noisy environments.

The remaining parts of the paper are organized as follows. Section 2 provides an overview
of the proposed speaker recognition system. Section 3 clearly describes the STRF theory and
its audio feature extraction method. Section 4 shows the experimental results under various
conditions, and Section 5 draws conclusions.

2 System overview

Figure 1 shows an overview of the proposed speaker recognition system. The pro-
posed system contains three modules, which are implemented in the following order:
the pre-processing module, the feature extraction module, and the recognition module.

Fig. 1 Block diagram of proposed speaker recognition system
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In the first module, we perform framing and voice activity detection as the pre-
processing to input speech. In the second module, the MFCC and the STRF-based
features are extracted. Conventional speaker recognition usually merely adopts MFCCs
as acoustical features. The MFCC takes into account the nonlinear frequency resolu-
tion which can simulate the hearing characteristics of human ears. However, these
considerations are only crude approximations of the auditory periphery. Therefore, the
STRF-based feature is fused with conventional MFCCs to become an effective
acoustical feature set for speaker recognition. The STRF theory comes from a
physiological model of the mammalian auditory system and generates the cortical
response. We convert the cortical response into the useful STRF-based feature. In the
third module, SVM models are trained or tested for the speaker recognition task.

3 Speaker feature extraction

The STRF has two stages [8, 26]. The first stage is an early auditory system for simulating
human hearing system, which generates auditory spectrograms. The second stage is a model of
the primary auditory cortex (A1) in the central auditory system.

3.1 Early auditory system

Firstly, an affine wavelet transformation of the signal s(t) is performed by passing audio signal
s(t) through a cochlear filter bank. The cochlear output yC is obtained by

yC t; fð Þ ¼ s tð Þ*th t; fð Þ ð1Þ
where h(t, f) denotes the impulse response of each filter, and * t represents the convolution
operation in the time domain.

Next, the cochlear output yC is fed into the hair cell stage. This stage consists of a
high-pass filter to change the pressure into a moving speed; a nonlinear compression
function g(u) to protect; a low-pass filter w(t) to reduce phase-locking on the
auditory-nerve.

yA t; fð Þ ¼ g ∂tyC t; fð Þð Þ*tw tð Þ ð2Þ
The lateral inhibitory network (LIN) in the cochlear nucleus performs frequency

selectivity. As in Eq. (3), taking the first-order derivative with respect to the tonotopic
axis first and then passing it though a half-wave rectifier can approximate the function
of LIN.

yLIN t; fð Þ ¼ max ∂ f yA t; fð Þ; 0� � ð3Þ
Finally, the output of the first stage is obtained by convoluting yLIN(t, f) with a short

window.

y t; fð Þ ¼ yLIN t; fð Þ*tμ t; τð Þ ð4Þ

where y(t, f) is the obtained auditory spectrogram, μ t; τð Þ ¼ e
−t
τ u tð Þ, and τ is the time constant

in msec. Figure 2 gives examples to compare conventional Fourier spectrograms and auditory
spectrograms.
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3.2 Model of primary auditory cortex (A1)

The so called STRF is the product of a spatial impulse response hS and the temporal impulse
responses hT :

STRF ¼ hS ⋅hT ð5Þ
Equations (6) and (7) give the spatial impulse response hs and the temporal impulse

response hT, respectively.

hS f ;ω; θð Þ ¼ hscale f ;ωð Þcosθþ ĥscale f ;ωð Þsinθ ð6Þ

hT t;Ω;φð Þ ¼ hrate t;Ωð Þcosφþ ĥrate t;Ωð Þsinφ ð7Þ
where ω and Ω denote the spatial density and velocity parameters of the spatial impulse
response and temporal impulse response filters, respectively. Besides, ĥ denotes the following
Hilbert transform, and θ and φ represent the characteristic phases.

Fig. 2 Examples comparing Fourier spectrograms and auditory spectrograms: a Fourier spectrogram of a clean
speech; b Fourier spectrogram of a noisy speech; c auditory spectrogram of a clean speech; d auditory
spectrogram of a noisy speech
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For an input auditory spectrogram y(t, f), the spectral-temporal response STRF(t, f, Ω, ω, φ,
θ), i.e. cortical representation, is calculated by

STRF t; f ;Ω;ω;φ; θð Þ ¼ y t; fð Þ*t f hS f ;ω; θð Þ⋅hT t;Ω;φð Þ½ � ð8Þ
where ∗ tf represents the convolution operation in both the time and frequency domains.

Figure 3 gives a scale-rate representation of the 36th frame of the speech signal in Fig. 2.
The horizontal axis represents the rate parameter in both downward and upward directions,
while the vertical axis presents the scale response. Figure 4 shows the MFCC of the speech
signal in Fig. 2. By comparing Fig. 4 with 3, the noise robustness of STRF is better than
MFCC.

3.3 STRF based feature extraction

The STRF representation reveals joint spectral-temporal modulations of the auditory
spectrogram. In STRF, the low and high scales capture the formants and harmonics,
respectively. This scale information is utilized to derive the STRF based features. The
scale values from 2−3 to 23 with the intervals of 0.5 cycle/octave are taken to span the
frequency range of the auditory spectrum. In this paper, three different STRF based
features are derived from the STRF representation [26]. The first STRF based feature
S(t, ω) is obtained by summing the all the rates and frequency in the STRF magnitude
representation.

S t;ωð Þ ¼
X
f

X
Ω

STRF t; f ; Ω; ω; 0; 0ð Þj j; ω ¼ 1; 2;…Nω: ð9Þ

where Nω is the scale number. Noted that the characteristic phases φ and θ in Eq. (9) are both
set to zero [29].

Next, a non-linear function is applied to S(t, ω) to generate the second STRF based feature
SL (t, ω). Here, a logarithmic function is utilized for this purpose.

SL t;ωð Þ ¼ log S t;ωð Þð Þ; ω ¼ 1; 2;…Nω: ð10Þ

Fig. 3 Scale-rate representation: a scale-rate representation of a clean speech; b scale-rate representation of a
noisy speech
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A discrete cosine transform (DCT) [14] is applied to SL(t, ω) to create the third STRF based
feature SDL(t, k).

SDL t; kð Þ ¼
X
ω¼1

Nω

SL t;ωð Þcos 2πωk
Nω

� �
; k ¼ 1; 2;…Nk ð11Þ

where Nk is the feature dimension of SDL(t, k), and Nk is smaller or equal to Nω.

4 Speaker classifier

Conventional speaker recognition uses GMM to model the acoustics characteristics of
speakers. The parameters of GMM are estimated through maximizing the likelihood of the
speaker data. Alternatively, the SVM has already proven its performance in speaker recogni-
tion [1, 17, 28]. An SVM is capable of discriminating 2-class of speaker data by training a
nonlinear decision boundary.

Considering speech features from two different speakers, an SVM is able to find out the
maximum margin hyperplane [22]. Assume {(xi, si), i=1, 2, …, N} are the training speaker
data. A pair (xi,si) denotes training speech feature xi was from speaker si, where si ∈{+1,-1}.
After learning the maximum margin hyperplane by an algorithm such as sequential minimal
optimization [16], a testing speech feature x is classified as s ϵ {+1, −1} based on the following
speaker decision function:

s xð Þ ¼ sign w⋅xð Þ þ bð Þ: ð12Þ
where w ⋅ x+ b= 0 is the maximum margin hyperplane.A kernel version of the speaker
decision function can be derived as

s xð Þ ¼ sign
XN
i¼1

μik x; xið Þ þ b

 !
ð13Þ

where k is a kernel function, and μi is a Lagrange multiplier.

Fig. 4 MFCC representation: a MFCC representation of a clean speech; b MFCC representation of a noisy
speech
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Multiple speaker recognition can be solved by a multi-class SVM, which is built based on a
required number of 2-class SVMs. In this paper, the multi-class SVM is achieved by a one-against-
one method [13, 24]. Avoting strategy is required to determine the final speaker recognition result.
For recognizing m speakers, the required number of 2-class SVM is m(m−1)/2.

5 Experimental results

5.1 Experimental setting

Speech samples are taken from a dataset that contains 36 speakers. For each speaker, 37 speech
clips were recorded. The duration of each clip for training and testing ranges roughly from 1 s
to 2 min. In the experiments, all speech clips were divided into frames of 16 ms with an
overlapping between consecutive frames of 8 ms. The Hamming-windowing was applied to
each frame. Finally, the MFCC feature and proposed feature were extracted. The two-fold
cross-validation was used to estimate the performance of the proposed speaker recognition
system.

The proposed STRF feature parameter was set using a scale of 2-3,-2,…,3 . The settings of
SVM and the parameters are the default settings of the LIBSVM tool [6]. The multi-class SVM
with radial basis function kernel was used to train the models, and the gamma value of the
radial basis function kernel was set to 2.

5.2 Comparison of the recognition systems

The first experiment was conducted to compare the speaker recognition performance among 13
dimensional MFCCs (MFCC13), S, SL and SDL. The experimental result is listed in Table 1.
MFCC13 yields a recognition rate of 93.07 %, which is the highest among all the features. The
proposed STRF based feature SDL yields a recognition rate value that is 17.72 % and 15.87 %
higher than that of SL and S, respectively. In the next experiment, we tried to combine MFCCs
(MFCC13) with STRF based features. The speaker recognition rate generated by each

Table 1 Performance of each feature

Speech feature Dimensionality Recognition rate (%)

MFCC13 13 93.07

S 13 54.39

SL 13 52.54

SDL 13 70.26

Table 2 Performance of combined features

speech feature Dimensionality Recognition rate (%)

MFCC13+ S 26 96.76

MFCC13+ SL 26 96.30

MFCC13+ SDL 26 96.92
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combined feature set is described in Table 2. The experimental result reveals that all of the
combined feature sets increase the recognition rate in comparison with individual MFCCs. The
best result of 96.92 % is obtained when SDL and MFCCs are adopted as the combined feature
set.

Since the access control system may be used in everywhere, it is important to consider the
problem of speech in noisy environments. Table 3 shows the speaker recognition rate of the
noisy speech. In this experiment, noisy speech signals were generated by adding white noise to
the clean speech using five different signal-to-noise ratio (SNR) levels: 20db, 15db, 10db, 5db
and 0db. In Table 3, the average recognition rate of SDL is 14.56 and 16.85 % higher than that
of S and SL. In other words, feature SDLyields the most favorable results among the three STRF
based features. Considering the proposed SDL feature, the difference of speaker recognition
rates is 1.69 % between clean speech and 0db noisy speech. However, the speaker recognition
rate of MFCC feature decreases 25.74 % from clean speech to 0db noisy speech, and SDL
performed a better result than MFCC when using 0db speech. The results show that the
proposed SDL feature is highly robust to noise condition. In addition, the best recognition rate
is produced by the fusion of the SDL and the MFCC13. The speaker recognition rates can
achieve over 90 % when the power of speech signal is higher than the power of noise.
Conventional MFCC can be interpreted as the information derived from energies of band-pass
filter. Combining captured formant and harmonics information from STRF based feature with
conventional MFCCs further improves the speaker recognition performance.

In the speaker recognition field, GMM with MFCCs is a widespread used standard method.
A GMM based speaker recognition system with 13 dimensional MFCCs is taken as the
baseline and its speaker recognition rates are listed in Table 4. Table 4 reveals that the proposed
system outperforms GMM baseline under clear and various noisy conditions.

To compare the computational complexity among different features, the feature extraction
time of one second of audio signal is obtained. The 13 dimensional MFCCs (MFCC13) and
the proposed STRF based feature require 0.18 and 0.75 s, respectively. Although the required
computational time of the proposed STRF scale-based feature is about four times of that of
MFCCs, the increased computational time is acceptable. In addition, the SVM classification

Table 3 Performance for noisy speech

Speech feature Clean 20 15 10 5 0

MFCC13 93.07 83.05 81.05 78.89 72.73 67.33

S 54.39 55.32 55.16 55.16 53.95 51.31

SL 52.54 52.23 51.77 52.85 51.46 50.69

SDL 70.26 69.95 68.72 68.41 66.72 68.57

MFCC13+ SDL 96.92 93.22 93.53 91.22 90.45 85.82

Table 4 Performance comparison with baseline

System Clean 20 15 10 5 0

Baseline 90.74 69.44 70.37 64.81 63.89 56.48

Proposed system 96.92 93.22 93.53 91.22 90.45 85.82
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requires roughly 0.05 s in 1 s of audio signal. Therefore, the proposed speaker recognition
system meets the real-time requirement.

Our experiments were conduct to recognize 36 speakers. In case the speaker recognition system
is used to deal with thousands of speakers, proximity indexes may be required to use. Several
percentages increase in recognition rate may vanish when using proximity indexes because of the
increase in dimensionality from the combination with STRF based features andMFCCs. However,
the main contribution of the paper is its robust speaker recognition performance under noisy
conditions. Take audio with SNR being 0 dB or 5db as example, the recognition rate of the
proposed combined feature set is about 18 % higher than that of conventional MFCCs. Therefore,
the improvement of about 18 % recognition rate is significant even when a drop of several
percentages in recognition rate does occur after using proximity indexes.

6 Conclusions

This work proposes a robust speaker recognition system using a combination of the STRF
based features and MFCCs. The STRF model concerns the spectral and temporal variations of
an analyzed auditory spectrogram. The scale features reveal many characteristics in the spatial
domain, such as formants and harmonics. Therefore, the following new acoustic features that
are based on scale features are proposed; the energy of each scale, the logarithmic scale energy,
and the DCTcoefficients of the logarithmic scale energy. The proposed feature set that consists
of STRF based features and MFCCs significantly improve the recognition rates in robust
speaker recognition tasks over those achieved using conventional MFCCs.

References

1. Andrew O. Hatch, Sachin K, Andreas S (2006) Within-class covariance normalization for SVM-based
speaker recognition. In: 2006 ICSLP

2. Anthony L, Kong AL, Bin M, Haizhou L (2013) Phonetically-constrained plda modeling for text-dependent
speaker verification with multiple short utterances. Human Language Technology Department, Institute for
Infocomm Research, A*STAR, Singapore

3. Anthony L, Kong AL, Bin M, Haizhou L (2015) The RSR2015: database for text-dependent speaker
verification using multiple pass-phrases. Institute for Infocomm Research (I2R), A*STAR, Singapore

4. Campbell WM, Campbell JP, Reynolds DA, Singer E, Torres-Carrasquillo PA (2006) Support vector
machines for speaker and language recognition. In: Computer Speech and Language

5. Campbell WM, Sturim DE, Reynolds DA (2006) Support vector machines using GMM supervectors for
speaker verification. In: IEEE Signal Processing Letters

6. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. In: ACM Transactions on
Intelligent Systems and Technology

7. Chi TS, Lin TH, Hsu CC (2012) Spectro-temporal modulation energy based mask for robust speaker
identification. J Acoust Soc Am 131(5):368–374

8. Chi TS, Ru P, Shamma S (2005) Multiresolution spectrotemporal analysis of complex sounds. J Acoust Soc
Am 118:887–906

9. Desai S, Black AW, Prahallad K (2010) Spectral mapping using artificial neural networks for voice
conversion. IEEE Trans Audio Speech Lang Process 18(5):954–964

10. Didier M, Andrzej D (2001) Forensic speaker recognition based on a Bayesian framework and Gaussian
mixture modelling (GMM). In: ODYSSEY-2001, Crete, Greece.

11. Ding IR, Yen CT (2013) Enhancing GMM speaker identification by incorporating SVM speaker verification
for intelligent web-based speech applications. In: Multimedia Tools and Applications

12. Douglas AR, Richard CR (1995) Robust text-independent speaker identification using Gaussian mixture
speaker models. In: IEEE Transactions on Speech and Audio Processing

4064 Multimed Tools Appl (2017) 76:4055–4068



13. Hsu W, Lin CJ (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural
Netw 13(2):415–425

14. Juang BH, Chen TH (1998) The past, present, and future of speech processing. IEEE Signal Process Mag
15(3):24–48

15. Khan SA, Anil ST, Jagannath HN, Vinay SP (2015) A unique approach in text independent speaker
recognition using MFCC feature sets and probabilistic neural network. In: 2015 Eighth International
Conference on Advances in Pattern Recognition (ICAPR), Kolkata

16. Kuan TW, Wang JF, Wang JC, Lin PC, Gu GH (2012) VLSI design of an SVM learning core on sequential
minimal optimization algorithm. IEEE Trans Very Large Scale Integr VLSI Syst 20(4):673–683

17. Kuruvachan KG, Arunraj K, Sreekumar KT, Santhosh KC, Ramachandran KI (2014) Towards improving the
performance of text/language independent speaker recognition systems. In: International Conference on
Power, Signals, Controls and Computation (EPSCICON)

18. Lukáš B, Pavel M, Petr S, Ondřej G, Jan Č (2007) Analysis of feature extraction and channel compensation
in a GMM speaker recognition system. In: IEEE Transactions on Audio, Speech, and Language Processing

19. Srinivas V, Santhi rani C, Madhu T (2013) Investigation of decision tree induction, probabilistic technique
and SVM for speaker identification. Int J Signal Process Image Process Pattern Recog 6(6):193–204

20. Stafylakis T, Kenny P, Ouellet P, Perez J, Kockmann M, Dumouchel P (2013) Text-dependent speaker
recognition using PLDA with uncertainty propagation. Centre de Recherche Informatique de Montreal
(CRIM), Canada

21. Tuzun OB, Demirekler M, Nakiboglu KB, (1994) Comparison of parametric and non-parametric represen-
tations of speech for recognition. In: Proc. 7th Mediterranean Electrotechnical Conference, 1994, pp 65–68

22. Vapnik V (1998) Statistical learning theory. Wiley, New York
23. Wang JC, Chin YH, Hsieh WC, Lin CH, Chen YR, Siahaan E (2015) Speaker identification with whispered

speech for the access control system. IEEE Trans Autom Sci Eng 12(4):1191–1199
24. Wang JC, Lee YS, Lin CH, Siahaan E, Yang CH (2015) Robust environmental sound recognition with fast

noise suppression for home automation. IEEE Trans Autom Sci Eng 12(4):1235–1242
25. Wang JC, Lian LX, Lin YY, Zhao JH (2015) VLSI design for SVM-based speaker verification system. IEEE

Trans Very Large Scale Integr VLSI Syst 23(7):1355–1359
26. Wang JC, Lin CH, Chen ET, Chang PC (2014) Spectral-temporal receptive fields and mfcc balanced feature

extraction for noisy speech recognition. In: Asia-Pacific Signal and Information Processing Association
(APSIPA)

27. Wang JC, Wang JF, Weng YS (2002) Chip design of MFCC extraction for speech recognition. Integr VLSI J
32(1–3):111–131

28. Wang JC, Yang CH, Wang JF, Lee HP (2007) Robust speaker identification and verification. IEEE Comput
Intell Mag 2(2):52–59

29. Woojay J, Juang BH (2008) Speech analysis in a model of the central auditory system. IEEE Trans Audio
Speech Lang Process 15(6):1802–1817

30. Yun L, Nicolas S, Luciana F, Mitchell M (2014) A novel scheme for speaker recognition using a
phonetically-aware deep neural network. IEEE International Conference on Acoustic, Speech and Signal
Processing (ICASSP), Florence

31. Zhe J, Wei H, Xin J (2013) Duration weighted Gaussian mixture model supervector modeling for robust
speaker recognition. In: 2013 Ninth International Conference on Natural Computation (ICNC), Shenyang,
China

Multimed Tools Appl (2017) 76:4055–4068 4065



Jia-Ching Wang received the M.S. and Ph.D. degrees in Electrical Engineering from National Cheng Kung
University, Tainan, Taiwan in 1997 and 2002, respectively. He was an Honorary Fellow of the Department of
Electrical and Computer Engineering, University of Wisconsin–Madison in 2008 and 2009. Currently, he is an
Associate Professor in the Department of Computer Science and Information Engineering, National Central
University. His research interests include signal processing, machine learning, and VLSI architecture design. Dr.
Wang is an honorary member of Phi Tau Phi Scholastic Honor Society, a senior member of IEEE, a member of
ACM and IEICE.

Chien-Yao Wang received the B.S. degree in applied computer science and information engineering from
National Central University, Zhongli, Taiwan, in 2013, and he is currently pursuing the PH. D. degree in
computer science and information engineering in NCU. His research interests include signal processing, deep
learning, and machine learning.

4066 Multimed Tools Appl (2017) 76:4055–4068



Yu-Hao Chin received the B.S. degree in applied information management from National Central University,
Zhongli, Taiwan, in 2013, and he is currently pursuing the PH. D. degree in computer science and information
engineering in NCU. His research interests include signal processing, pattern recognition, and machine learning.

Yu-Ting Liu received the M.S. degree in the Video-Audio Processing Laboratory (VAPLab) in communication
engineering in NCU. Her research interests include speech recognition, audio signal processing and deep
learning.

Multimed Tools Appl (2017) 76:4055–4068 4067



En-Ting Chen received the M.S. degree in communication engineering in NCU. Her research interests include
audio signal processing and speech processing.

Pao-Chi Chang received the B.S. and M.S. degrees from National Chiao Tung University, Taiwan, in 1977 and
1979, respectively, and the Ph. D. degree from Stanford University, California, 1986, all in electrical engineering.
From 1986 to 1993, he was a research staff member of the department of communications at IBM T. J. Watson
Research Center, Hawthorne, New York. At Watson, his work centered on high speed switching systems,
efficient network design algorithms, and multimedia conferencing. In 1993, he joined the faculty of National
Central University, Taiwan, where he is presently a Professor in the Department of Communication Engineering.
In 1994, Dr. Chang established and has headed the Video-Audio Processing Laboratory (VAPLab) in the
Electrical Engineering Department and Communication Department of National Central University since. Dr.
Chang is the principle investigator for many joint projects with National Science Council (NSC), Institute of
Information Industry (III), Chung Hwa Telecommunication Laboratories (TL), and many other companies. His
research interests include speech/audio coding, video/image compression, scalable coding, error resilient coding,
digital watermarking and data hiding, and multimedia delivery over packet and wireless networks.

4068 Multimed Tools Appl (2017) 76:4055–4068


	Spectral-temporal receptive fields and MFCC balanced feature extraction for robust speaker recognition
	Abstract
	Introduction
	System overview
	Speaker feature extraction
	Early auditory system
	Model of primary auditory cortex (A1)
	STRF based feature extraction

	Speaker classifier
	Experimental results
	Experimental setting
	Comparison of the recognition systems

	Conclusions
	References


