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This paper proposes a pairwise trajectory matching scheme from multiple cameras for people tracking,
handling the mistracking situations caused by occlusion events occurred in one of the cameras. In a mul-
tiple cameras environment, a geometric calibration process is necessary for the co-plane of the overlap-
ping field of views from different cameras as the initial step. Once the geometry is calibrated, according to
the 2D positions of the analyzed foot joints from the depth cameras. Homography transformation is
applied to project the detected foot points from different views into a synergistic virtual bird’s eye view
for people tracking. At the virtual bird’s eye view, the people tracking results from each of the cameras
based on Kalman filter are fused according to the proposed pairwise trajectory matching scheme. The
contribution of this paper is trifold: (1) The proposed hand-gesture-triggered calibration process with
temporally synchronization capability can effectively build and calibrate the geometry in a region of
interest. (2) The proposed interleaving-based skeleton obtaining and moving average based valid skele-
ton determination can extend the skeleton tracking capability to track more people. (3) The proposed
pairwise trajectory matching scheme effectively manages occlusion situations happened in one of the
depth cameras. In addition, in the extensive experimental results, the proposed method can track up
to six simultaneously freely moving persons in the field of view, with affordable complexity for real-
time applications. Furthermore, the infrared-based depth cameras track people satisfactorily from bright
to extremely dark environments.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

People tracking in a camera monitoring environment attracts
intensive attention from researchers and engineers in the field of
video surveillance, video understanding, and behavior analysis.
When more cameras are adopted to monitor a region of interest,
such as the surrounding area of an ATM, the area of a checked
baggage inspection, or the entrance of a shopping mall, people
tracking becomes a challenging task since the people severely
occluded by others causes the mistracking issue and incorrectly
assign the correspondence in the tracking process. On the other
hand, when the above mentioned areas with different lighting con-
ditions need to be monitored, people tracking becomes another
challenging task, because the color distribution of the target people
and the background color model are quite different in bright
environment and in dark environment.

To achieve people tracking, researchers started to utilize a
single camera [1–6] based on the color information. However,
unstable lighting conditions and complex background cause
imperfect people detection and tracking results. When considering
multiple cameras facing to the same region of interest for people
tracking, spatial geometries among the cameras [7–9] are built as
the initial process and combine with proper tracking algorithms.
Nevertheless, imperfect built spatial geometries and occlusion
situations make the tracking task challenging.

To achieve people tracking in complex environments and clut-
tered backgrounds, an RGB-D camera, Kinect [10] of Microsoft, is
proposed for people tracking, pose recognition, and behavior anal-
ysis. Kinect has one color (RGB) camera, one infrared emitter with
structured light, and one infrared receiver (so-called depth cam-
era), to monitor and analyze the people in front of it. In this paper,
the Kinect cameras with the official Kinect software development
kit (sdk) [11] are adopted for reliable people detection. As shown
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in Fig. 1(a), based on the Kinect sdk, the Kinect cameras mounted in
different locations (c1; c2, and c3) can detect and track the people
reliably from the depth channel when no occlusion event
happened. However, as shown in Fig. 1(b), when one person was
occluded by another, the occluded person could not be seen in
c2. Meanwhile, the skeletons and joints of the occluded person
cannot be detected for further tracking.

In this paper, Kinect cameras with infra-red emitter and recei-
ver modules are adopted for reliable people detection both in
bright environment and in dark environment. The gesture recogni-
tion results based on the joints and skeletons revealed from Kinect
sdk are utilized for building the spatial geometry in a multiple
cameras environment. Furthermore, a pairwise trajectory match-
ing scheme is proposed for managing occlusion events by compen-
sating from the occlusion-free cameras. Therefore, the contribution
of this paper is trifold: (1) a hand-gesture-triggered spatial calibra-
tion process, (2) a pairwise trajectory matching to manage occlu-
sion events, and (3) accurate people detection and tracking
capabilities, compared to the state-of-the-art methods, with
affordable for realtime applications.

The remainder of this paper is organized as follows. Related
work is discussed in Section 2. The proposed process for calibrating
the geometries of the multiple depth cameras is explained in
Section 3. In Section 4, the proposed people tracking system,
including occlusion detection and pairwise trajectory matching
among cameras, is described in detail. The experimental results
are reported in Section 5, and finally, a conclusion is provided in
Section 6.

2. Related work

According to the relevant literature, people tracking started
from using a single camera [1–6], based on obtaining the corre-
spondences from successive frames. The statistics of geometric
distribution [1–3] and color distribution [4–6] of the detected
blobs with further analysis and filtering process are utilized to
determine the detected people area. However, the above-
mentioned color-based approaches are sensitive to color changing,
especially for the scenarios with unstable lighting conditions.
When noticing the people detection accuracy degrading situations
caused by unstable visible lighting conditions, Shotton et al. [12]
applied a Kinect camera with invisible light (infrared) emitter
and receiver to measure the depth in different planes, i.e., a 3D
space, for people tracking. The detection and tracking tasks are
not only achieved to the person level, but also to the joints and
skeletons level. Even so, when using a Kinect camera, the occlusion
situations still cause the mistracking issues, due to the front view
mounting criteria. To suppress the occlusion effects, Ozturk et al.
[13] mounted a single camera at a bird’s eye view, using the
motion vectors, optical flows of scale-invariant feature transform
(SIFT) [14] points, color features, and edge histograms for people
tracking. Furthermore, Baum et al. [15] mounted a Kinect camera
from a bird’s eye view to detect objects according to a conventional
frame differencing technique [1]. Despite that, in many environ-
ments with a high ceiling or no ceiling, mounting a camera to
obtain a bird’s eye view is difficult, limiting the capability of this
kind of approaches.

It is feasible to mount multiple cameras at the side views for
people tracking, when single view approaches meet the limita-
tions. Hu et al. [7] proposed a principal axis-based correspondence
examination among multiple cameras, based on homography
transformation [16,17] for cross camera matching. To handle the
occluded people, Khan and Shah [8] proposed to localize on multi-
ple scene planes, with a planar homography occupancy constraint
and the foreground likelihood information extracted from different
views. Berclaz et al. [9] proposed a probabilistic occupancy map
across consecutive frames to estimate the most likely trajectories
of an unknown number of targets, including entrances and depar-
tures. Though, increasing the unit square size of the grid defined in
their paper reduces precision, and reducing the unit square size
increases precision as well as computation time.

In addition, the conventional probability occupancy maps [18]
is not applied in color cameras [9], but also extended to deal with
depth map [19] from a single depth camera. The authors propose a
generative model to predict the distribution of depth images to
deal with the potentially occluding objects in a scene. However,
as mentioned by the authors, to process a single depth frame needs
several seconds on a 2.3 GHz Intel CPU would limit the range of the
real-time applications. For real-time applications, Jafari et al. [20]
proposed a depth-based upper body detector to be mounted on
mobile robots and head-worn cameras. The object detect and
tracking can be achieved to 24 fps, using a GPU-based ground
HOG detector, the system still provide 18 fps results. On the other
hand, people tracking from the RGB-D data captured from mobile
service robots, methods by Munaro and Menegatti [21] provided
26 fps detector and tracker results. As a result, using depth cameras
to track people in the field of view from multiple cameras with
real-time response becomes an important research issue.

The Kalman filter [22,23] and particle filter [24,25] are widely
used for object tracking [26] to obtain the correspondences across
frames from a monocular camera, based on the statistical properties
of the observations. Furthermore, Gruenwedel et al. [27] utilized Kal-
man filter to track humans in a multi-camera environment for the
indoor and meeting scenarios. In addition, Sharma and Moon [28]
proposed a SIFT-based object tracking algorithm for video frames.
Nevertheless, the long-term occlusion of the observation from a sin-
gle camera causes a complete trajectory to be cut into broken slices
of trajectories. Furthermore, the erroneously added trajectories from
different cameras engender errors in cross-camera tracking.

Therefore, in this paper, multiple Kinect (depth) cameras
mounted at side views with official sdk [11] are utilized for people
detection [12] and the proposed pairwise trajectory matching for
people tracking to deal with the occlusion problem occurred in
the observed field of view.
3. Hand-gesture-triggered geometry calibration

In the initialization process of the proposed method, the geome-
tries among multiple cameras must be calibrated. Hence, as shown
in the top section of the flow chart in Fig. 2, the Kinect sdk [11] is
applied to detect people and track the corresponding skeletal joints
from the signals in the depth channel.

Joint jit;ck ¼ xit;ck ; y
i
t;ck

� �
represents the 2D position belonging to

the ith joint from the kth camera ck at time t in the captured 2D
plane. In this hand-gesture-triggered multiple-camera calibration
process, upwardmotion by the right hand triggers a signal in the ser-
ver. For example, at time t at the kth camera ck, upward motion by a
right hand gck

ðtÞ is detected and the signal is triggered and sent to
the server, which records the misalignment of the right hand joints.
Upward motion of the right hand is expressed as follows:

gck
ðtÞ ¼ 1; if yi¼RH

t;ck
> yi¼HD

t;ck
;

0; otherwise;

(
ð1Þ

where yi¼RH
t;ck

represents the height of the right hand joint (i ¼ RH)

ji¼RH
t;ck

from the kth camera ck, and yi¼HD
t;ck

represents the height of the

head joint ji¼HD
t;ck

belonging to the same camera. Hereafter, ji¼RH
t;ck

is

simplified as jRHt;ck , and yi¼HD
t;ck

is represented as yHDt;ck .
The color image frames and the corresponding foreground

detection results from the depth frames shown in Fig. 3 depicting



Fig. 1. The people detection and tracking results from the Kinect sdk [11] (a) without occlusion, and (b) an occlusion event occurs in c2.

Fig. 2. The flowchart of the proposed people tracking system.
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the motions captured from different cameras. The lifted hand of
the user in camera c2 is self-occluded by the user. Under this kind
of situation, the trigger motion cannot be recognized from c2, caus-
ing an invalid triggering issue. However, the upward motion can be
properly recognized in all views of cameras, as shown by the right-
most column of Fig. 3. Therefore, in this paper, an upward motion
is used for triggering the geometry calibration.

3.1. Temporal synchronization

The trigger signal defined in Eq. (1) is sent to the server through
the network. When network traffic is heavy or the wireless envi-
ronment is complex (doors and walls affect the wireless signal
through reflection or diffusion), the arrival time of the triggered
signal gck

ðtÞ from camera ck to the server cannot be synchronized
because of delays, jitters, or packet loss. To alleviate the temporal
noise caused by environmental complexity, the successively
received trigger signal gck

ðtÞ belonging to camera ck is observed over
a period of time in a sliding window with size w. The reception of a
valid successive trigger signal from camera ck is expressed as

sðtÞ ¼ 1; gck
ðtÞ ¼ 1 8 t �w

2
< t < t þw

2

n o
and 8k 2 K; ð2Þ

where K is the entire camera set. Fig. 4 depicts an example of a valid
trigger signal gck

ðtÞ from different cameras.
In Fig. 4, near time t ¼ 270, valid trigger signals are received

from all cameras, because the upward motion of the right hand
from each of the cameras could be detected. However, near times
t ¼ 400, and t ¼ 700; c2 and c3, respectively, cannot receive valid
trigger signals sðtÞ because of the busy network environment. Near
time t ¼ 910, all cameras can again receive trigger signals. Mean-

while, positions of the left foot joint jLFt;ck and right foot joint jRFt;ck
from all cameras are sent to the server for further geometric calcu-
lation to calibrate the homography matrix and project the points
among the cameras.



Fig. 3. Hand motion.

Fig. 4. The valid trigger signal function received from different cameras: (a) gc1
ðtÞ from c1, (b) gc2

ðtÞ from c2, (c) gc3
ðtÞ from c3, and (d) sðtÞ.
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3.2. Relative hand joint issue among multiple cameras

In the proposed multiple-camera environment, each camera ck
can detect the left foot joint jLFt;ck and right foot joint jRFt;ck . However,
when two cameras are mounted facing opposite directions, the
coordinates are in opposing directions. Directly using the joints
to calculate the geometries would lead to miscalculations caused
by misalignment. Therefore, by calculating the centroid of the
two joints, the foot joint position can be calculated as
jFt;ck ¼
jRFt;ck þ jLFt;ck

2
¼ xRFt;ck þ xLFt;ck

2
;
yRFt;ck þ yLFt;ck

2

 !
¼ xFt;ck ; y

F
t;ck

� �
; ð3Þ

when the final trigger signal is sent to the server (i.e., sðtÞ ¼ 1 in Eq.
(2)). Thus, misalignment among cameras can be avoided. Therefore,
Eq. (1) should be modified to

gck
ðtÞ ¼ 1; if yRHt;ck > yHDt;ck or yLHt;ck > yHDt;ck ;

0; otherwise;

(
ð4Þ
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to send the trigger signal to the server. This hand-gesture-triggered
geometry calibration process enables users to trigger the system
according to a single hand raising gesture in the proposed system.
4. Proposed people tracking system

According to the foreground detection from the official Kinect
sdk [11], not only the geometry among multiple cameras can be
calibrated, but also the people moving in the field of view can be
tracked. In this paper, a multi-trajectory matching using occlusion
management is proposed, as depicted by the red dashed block of
Fig. 2, including four major parts: multiple cameras projection,
occlusion detection, Kalman filter for multiple-object tracking,
and pairwise trajectory matching. These processes are described
in detail in the following subsections.
4.1. Interleaving-based skeletal joints obtaining with valid skeleton
determination

The official Kinect sdk [11] was adopted to obtain the frames in
the color1 channel (first row of Fig. 1), depth channel (second row),
foreground detection (third row), and skeletons (fourth row). As
shown in the second row of Fig. 1, a brighter luminance indicates
that an object is closer to the depth camera, whereas a darker lumi-
nance signifies that an object is farther from the camera.

In an environment with multiple depth cameras, when a person
is captured from different views (shown by the columns in Fig. 1),
meanwhile, cross-camera interference [29] caused by multiple
projections from the infrared emitters belonging to the multiple
Kinect cameras in the overlapping area would not severely affect
the person detection results obtained by applying the Kinect sdk
in this study. Although the persons could be sequentially tracked
by the Kinect sdk, partial or full occlusion over a long period of
time resulted in mistracking. The occlusion effect can be addressed
by using the proposed method.

Given the positions of the detected foot point defined in Eq. (3),
ðxFt;ck ; yFt;ck Þ, and the total numberM of people detected by camera ck,
the foot point of the mth detected person is represented by

jFmt;ck ¼ ðxFmt;ck ; yFmt;ck Þ: ð5Þ
In addition, the position set is expressed as follows:

ðXF
t;ck

;YF
t;ck

Þ ¼ xFmt;ck ; y
Fm
t;ck

� �
: 81 6 m 6 M

n o
: ð6Þ

The set of detected foot points is used to generate the projective
geometric matrix among various cameras.
4.1.1. Interleaving-based skeleton obtaining
Because the official Kinect sdk 1.8 [11] can provide up to six

people tracking with centroids at each frame, but only with two
of six people has the skeleton results, i.e., the number of tracked
centroid of persons is larger than the number of tracked skeleton
of persons. To extend the skeletons tracking capability to different
persons, we propose an interleaving-based skeleton obtaining
scheme using a time-sharing concept.

As shown in Fig. 5(a), the conventional skeleton obtained from
Kinect sdk is locked to two of the detected persons according pri-
ority ordered by the entering time or the distance to the camera.
Although the centroids of the other persons (circles with different
colors) can be obtained, only the skeletons with black rectangle
and red rectangle can be obtained at all time instances (t1–t6).
1 For interpretation of color in Figs. 1–3, 5, 8–12, 16, and 17, the reader is referred
to the web version of this article.
To share the occupied time instances from the skeleton tracked
persons to other detected persons, we propose to randomly select
two of the all detected persons for revealing the analytic skeleton
results. As shown in Fig. 5(b), at each time instance, two of the
whole detected persons are selected for revealing skeletons, e.g.,
black rectangle and green rectangle at t1 and black rectangle and
blue rectangle at t2, etc. When observing from the time axis, the
skeletons belonging to different persons can be obtained as a inter-
leaving pattern, as shown in Fig. 5(c).

4.1.2. Moving average based valid skeleton determination
To reduce the effects caused by the noisy tracking results

from unreliable skeletons, e.g., shortened or twisted skeletons
belonging to a partial occluded person, we propose a moving
average based valid skeleton determination scheme. For the
obtained height of the skeleton hm

t belonging to the person m
at time t, the skeleton validation can be determined by observ-
ing the corresponding heights across the temporal axis, based
on a moving average operation, with the observation sliding
window size w as:

vm
t ¼ 1; if hm

t > a �
Pt�1

t�w
2
hmt þ
Ptþw

2
tþ1

hmt

w

0
@

1
A;

0; otherwise;

8>><
>>: ð7Þ

where a is used as the height weighted coefficients for determin-
ing the validation of a skeleton. For different motions, e.g., fast
moving, slow moving, turning around, of a tracked person, the
influence of the weighted coefficients can be designed as symmet-
rical Gaussian distribution, Poisson distribution, and other distri-
butions. However, to simplify the influence, the a is set as a
constant coefficient, i.e. a ¼ 0:5, which is used for the experiments
in this paper.

As shown in Fig. 6, for an obtained height of the skeleton, the
past and next five heights are observed for determining the valida-
tion of the current skeleton hm

t . When determining the validation of
a skeleton, only the skeletons with valid flag vm

t ¼ 1 are used for
observing the past side t � w

2 . . . t � 1
� �

. In other words, the invalid
heights of skeletons are skipped for observation.

4.2. Multi-trajectory matching using occlusion management

Before mistracking can be corrected, cross-camera geometries is
necessary to be built in the initialization process. The occlusion
detected by each camera is used to identify missing parts clearly
and relink to corresponding trajectories. Finally, trajectories of
the same person from different cameras can be fused into a single
trajectory, correcting the mistracking issue.

4.2.1. Multiple cameras projection
In the proposed system, a homography [16,17] technique is

used to match corresponding objects among different views. Sim-
ilar to multiple-camera people tracking systems [7–9], the posi-
tions of people detected by different cameras can be calculated
according to homography matrices Hs.

Given the foot point captured by camera c1 at time t of the mth

person with the foot joint jFmt;c1 ¼ xFmt;c1 ; y
Fm
t;c1

� �
, the projected foot

point in camera c2; xFmt;c1!c2 ; y
Fm
t;c1!c2

� �
, can be calculated from jFmt;c1

and H as:

b � xFmt;c1!c2

b � yFmt;c1!c2

b

2
64

3
75 ¼ H

xFmt;c1
yFmt;c1
1

2
64

3
75; ð8Þ



Fig. 5. Skeleton interleaving.

Fig. 6. Moving average based valid skeleton determination process, with the
observation sliding window size: w ¼ 10.
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where b is a scalar. The homography matrices can be obtained by
supplying the corresponding landmark points from different cam-
eras [7–9] at the initial state to the virtual bird’s eye view as the
synergy point of view.

An example of the detected foot points of the proposed hand-
gesture triggered geometry calibration for calculating the homog-
raphy matrix H is shown in Fig. 7. When a upward motion is
detected, the positions of the foot points from different views,
e.g. c1 and c2 are captured for further generating the homography
matrices. In addition, the occupied field of view in different cam-
eras are mapped to a virtual bird’s eye view. As a result, the
homography matrices Hs can be correspondingly obtained.
4.2.2. Occlusion detection: multiple points in one region
In this study, the relationship among multiple points in one

region proposed by Sun et al. [30] was considered to manage the
occlusion in pairwise cameras. Region R is the detected foreground

area in camera c2 with left and right boundaries xRmin
t;c2 and xRmax

t;c2 ,
respectively, in the x direction, and top and bottom boundaries

yRmin
t;c2 and yRmax

t;c2 , respectively, in the y direction (Fig. 8). The detected
foot point projected from c1 to c2 of the mth person is expressed as

jFmt;c1!c2
¼ xFmt;c1!c2

; yFmt;c1!c2

� �
: xRmax

t;c2
> xFmt;c1!c2

> xRmin
t;c2

; yRmax
t;c1

> yFmt;c2!c2
> yRmin

t;c2

n o
: ð9Þ

When multiple (P 2) projected foot points fall into the same region

R, as the two blue circles xFmt;c1!c2 ; y
Fm
t;c1!c2

� �
and xFm0

t;c1!c2 ; y
Fm0
t;c1!c2

� �
in

the upper-left section of Fig. 8 do, the occlusion event is detected.
Therefore, the camera by camera pairwise occlusion detection pro-
cess can successfully reveal the occlusion events happened in each
camera.
4.2.3. Kalman filter for multiple-object tracking

The foot point set XF
t;ck

; YF
t;ck

� �
obtained in Eq. (6) and a conven-

tional Kalman filter [31] is applied for people tracking in each cam-
era. Detected foot points from different cameras are used to obtain
trajectories for cameras as well as to project a synergistic virtual
view (i.e., a bird’s eye view). In the proposed method, detected foot
points are projected from a real camera ck to a virtual camera cv .

Based on the projected points XFm
t;ck!cv ;Y

Fm
t;ck!cv

� �
belonging to the

mth person in the kth camera, according to Kalman filter, the tra-
jectory is

um
ck!cv ¼ jFmt;ck!cv ¼ xFmt;ck!cv ; y

Fm
t;ck!cv

� �
: 8t 2 T

n o
; ð10Þ

where T is the period of observation time. For example, Fig. 9(a)
depicts a trajectory in a spatio-temporal space. A set of detected tra-
jectories is expressed as follows:

Uck!cv ¼ u1
ck!cv ; . . .u

m
ck!cv ; . . .u

M0
ck!cv

h i
; ð11Þ

where um
ck!cv is the mth trajectory from the kth camera after track-

ing multiple objects for the total M0 trajectories generated by Kal-
man filter technique. The number M0 and M might not be the
same in each frame because the number of detected people might
be influenced by occlusion or environmental noises.

However, directly using the Kalman filter for tracking causes
mistracking because of long-term occlusion. For example, the col-
ored dots in Fig. 9(a) represent the tracking results from the Kal-
man filter. The blue and pink marks are trajectories in the spatio-
temporal space of the same person from camera c1; the marks
are incorrectly interpreted as two independent trajectories. Cam-
era c2 exhibited a similar situation in which the orange and green
marks were incorrectly assumed to be two trajectories. The
multiple-trajectory matching scheme proposed in this paper
reduces mistracking by reducing occlusion in an environment con-
taining multiple depth cameras.

4.2.4. Pairwise trajectory matching
According to the occlusion detection scheme Eq. (9) and the tra-

jectories obtained using the Kalman filter Eq. (11), the number of
detected people can be determined according to a voting process
based on observations from the temporal axis during a period
which no occlusion occurred.

Given the obtained trajectories defined in Section 4.2.2, Gaff-
ney’s method [32] is applied in trajectory clustering using a linear
regression mixtures model that enables continuous trajectory
alignment in both time and space measurements. The trajectories
obtained using the Kalman filter in Fig. 10 are depicted using col-
ored markings. After applying Gaffney’s clustering algorithm, the
trajectories enclosed by the blue oval belong to one cluster, and
the trajectories enclosed by the red oval belong to another cluster.

According the occlusion detection process defined in Eq. (9), the

foot points with no occlusion are denoted as j�
Fn
t;ck!cv . The number of

cameras detecting occlusion is represented by O, and the fused foot
point in the synergistic point of view is calculated as follows:

j0Fnt;cv ¼
P

ck
j
�Fn
t;ck!cv

K�O ; if occlusion occurred;P
ck

jFnt;ck!cv

K ; otherwise;

8>><
>>: ð12Þ

where n : 1 6 n 6 N is the clustered trajectory index belonging to
the nth person in a total of N clusters. The trajectory belonging to
the nth person is represented by:

u0n
cv ¼ j0Fnt;cv ¼ x0Fnt;cv ; y

0Fn
t;cv

� �
: 8t 2 T;

n o
; ð13Þ

where j0Fnt;cv is the 2D position calculated according to Eq. (12).



Fig. 7. Homography matrices generated from the proposed hand-gesture triggered geometry calibration from multi view cameras.
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The red circles in Fig. 9(b) are the fused foot points in the syn-
ergistic view (i.e., u0n

cv in Eq. (13)). Unlike the broken trajectories
(four trajectories in Fig. 9(a) for the same person from two views)
obtained using the conventional Kalman filter, the trajectory
obtained using pairwise trajectory matching (depicted by the red
circles in Fig. 9(b)) can be successfully fused into a single represen-
tative trajectory for one person.
5. Experimental results

In the experimental results, the official Kinect sdk 1.8 was
adopted to obtain the skeleton analysis results from the built-in
infrared depth cameras and to acquire tracking results for a maxi-
mum of two people with skeleton and joint information. The pro-
posed method was evaluated under bright and dark lighting
conditions in three settings: a studio, a laboratory, and a lobby
(Fig. 11(a)–(c)). Table 1 shows the frame testing numbers of the
scenes and time periods. Because the proposed method addresses
the occlusion situations, only the successive frames before, during,
and after occlusion were evaluated.
Three Kinect cameras with depth cameras were mounted 2.0 m
high in each setting; the fields of view of the cameras overlapped in
a 1.5 m � 1.5 m square on the ground plane. As shown in Fig. 11
(a)–(c), the positions of c1; c2, and c3 are marked by blue, yellow,
and green circles, respectively. Camera c4 (the dashed black circle)
represents the synergistic virtual view (bird’s eye view) camera; no
real camera was mounted at c4, but the people detected by c1; c2,
and c3 were transformed into the synergistic virtual view (c4).
The green and red arrows in each view represent the movement
trajectories of the two people.

5.1. Calibration

To track people by using cameras with different fields of view,
the preprocessing step of the proposed system involves calibrating
the geometries among the cameras according to the processes
described in Section 3. The relative positions of the overlapping
area and mounted cameras are depicted in the right parts of

Fig. 11(a)–(c). For example, the foot joint jFmt;c1 detected by camera
c1. According to the homography matrix calculated using the



Fig. 8. Top: two example views of the person detection results by our system. The detected people are enclosed by rectangles. The calculated foot locations of different people
are illustrated by different colored circles. Bottom: an occluded event is detected in the left example view where the two circles lie within the same rectangular region. In
contrast to that, people associated to these two circles do not occlude each other in the example view on the right. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 9. The trajectory of an occlusion example shown in the synergistic virtual bird’s eye view: (a) the pink marks and blue marks are the detected foot points from camera c1
after applying Kalman filter tracking; the orange marks and green marks are the detected foot points from camera c2. For example, the broken part between the pink
trajectory and the blue trajectory is due to the occlusion event happened, and (b) the obtained fused trajectory (the red) marks which applied the proposed pairwise trajectory
matching scheme. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Trajectory clustering results according to Gaffney’s method [32].
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procedure described in Section 4.2.1, the foot joint jFmt;c2!c1
belonging

to the same person was transformed from camera c2.
To evaluate the proposed hand-gesture-triggered calibration

process, the foot points recorded from all cameras sending to the
server were temporally synchronized according to the procedure
described in Section 3.1. As shown in Fig. 11(d), the right foot joint

jRFt;ck detected by each camera when an upward hand motion was
captured was used in a one foot scenario to generate the homogra-
phy matrix used for matching the corresponding points among
cameras. When the RANdom SAmple Consensus[33] (RANSAC)
algorithm was applied to remove the outliers, distortion of the
one foot results was reduced to a one foot + ransac result. Deter-
mined according to the process proposed in Section 3.2, the spatial
result prevented relatively less distortion. Furthermore, when the
RANSAC algorithm was applied, the distortion decreased further.
Fig. 11. The camera setting and in three testing scenes and the corresponding people m
mounted Kinect cameras at the side view, and c4 (the black dashed circle) is location of
average distortion from 20 trials of different feature point obtaining approaches: one fo
A common method for automatic identifying the corresponding
points among different views is to use the SIFT [14] algorithm;
however, when this method was applied, the distortion was high,
because the SIFT feature points could not determine the corre-
sponding points from the cameras, which were mounted too far
from each other or the feature points were not is the same plane.
As shown by the blue bar, the manually selected corresponding
points among different views can achieve the lowest distortion
with highest accuracy for calibration, however, for a flat and clean
plane or the plane with repeated textures, it is still time consuming
to manually identify the feature points in the area, shown in
Fig. 12. Besides manually selected feature points scheme, to effec-
tively obtain the corresponding points in a few seconds, in the
evaluation, the proposed spatial calibration using RANSAC achieved
the most favorable performance and the less severe distortion
(average: 10.13 pixels, shown by the purple bar); this calibration
process was adopted in all of the subsequent tests.

5.2. Tracking

Fig. 13 shows a representative test conducted to evaluate the
proposed tracking method. In Fig. 13, two people are moving
toward each other; the male is occluded by the female in cameras
c2 and c1 (Fig. 13(b) and (c), respectively). The second row of Fig. 13
shows the results obtained by using the Kalman filter directly. The
occluded person was wrongly assigned to a different trajectory in a
false positive situation. However, when the proposed method was
applied, the people were correctly assigned two trajectories (the
third row), even when occlusion occurred. Moreover, when the set-
ting was dark, because the infrared depth cameras on the Kinect
cameras could detect the people’s motion, the people were still
correctly tracked (Fig. 14).

5.2.1. Performance comparisons
The performance of the proposed method was compared using

the methods of Berclaz et al. [9], Ozturk et al. [13], and Baum et al.
[15]. Three cameras were used to record frames from three points
ovement trajectories: (a) Studio, (b) Lab, (c) Lobby. c1; c2; c3 are the locations of the
the synergistic virtual view (bird’s eye view) camera. (d) Calibration results of the
ot, spatial, manually, and SIFT, without/with the RANSAC outlier removal process.



Table 1
The testing number of frames for different scenes with bright and dark lighting
conditions of the successive frames with before, during, and after occlusion situations.

Number of frames Period of time (s)

Bright Lab 32 7.11
Dark Lab 34 7.56
Bright Studio 34 7.56
Dark Studio 41 9.11
Bright Lobby 37 8.22
Dark Lobby 40 8.89
Bright Lab-E 1617 240
Dark Lab-E 1358 240
Bright Sidewalk-E 1503 240
Dark Sidewalk-E 1389 240
Bright Lab-Crowded 175 52
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of view. Fig. 15(a) shows frames obtained from cameras in the
color channel that were used for people detection. Fig. 15(b) illus-
trates that the depth information corresponded to information
recorded by Kinect cameras equipped with depth cameras,
enabling people detection and tracking. A multiple-camera people
tracking method [9] was applied in comparison and implemented
in the color channel according to the source code of the authors
[34] (Fig. 15(c)). To compare the performance of the approach
using a single bird’s-eye-view camera, conventional frame differ-
encing in the color channel was implemented according to the
foreground detection process described by Ozturk et al. [13];
Fig. 15(d) depicts a representative captured image. By adopting
the depth channel to perform foreground object detection based
on depth frame differencing at the same position, the method of
Baum et al. [15] was implemented for comparison (Fig. 15(e)).
5.2.2. Subjective evaluation
The dataset listed in Table 1 was subjected to a subjective eval-

uation (studio, lab, and lobby settings with bright and dark lighting
conditions). At first, Fig. 16(a) shows the movement of the people,
and the ground truth is labeled in Fig. 16(b). Next, Fig. 16(c) shows
the respective detection and tracking results of the proposed
method and comparative methods. The proposed method reliably
detected and tracked people, yielding results similar to those of
the bird’s eye view approach [15] in the depth channel. In some
applications, mounting a camera on the ceiling to obtain a bird’s
eye view (e.g., [13,15]) is unfeasible. The mounted side-view depth
cameras in the proposed method, however, produced satisfactory
tracking results, comparing to the other methods (Fig. 16(d)–(f)).
Fig. 12. A flat and clean floor plane (with repeated patterns) on a stage, captured from
The limited detection observed when using the method of Ber-
claz et al. [9] (POM) was caused by the tradeoff for the grid setting
(20 cm � 20 cm) in the POM source code. In addition, in the bright
lab setting (Fig. 16(d)), the dots in cyan and blue indicate that the
detected results were incorrectly divided into two trajectories,
whereas the results obtained using the proposed method were able
to correctly generate only one trajectory per person, even when
occlusion occurred. When the color-channel approach of Ozturk
et al. [13] was applied, cameras could not detect people in dark
lighting settings.

5.2.3. Objective evaluation
Fig. 17 shows a comparison of the average distortion observed

in the obtained detection results with the ground truth. After the
Euclidean distance was calculated, the overall results indicated
that the proposed method exhibited the lowest distortion
(Fig. 17(a)); Fig. 17(b) shows the corresponding detailed results.
The lack of bars (method of Ozturk et al. [13]) in Fig. 17(b) signifies
that the cameras could not detect people in the color channel in si-
tuations that were too dark. The scene could be captured from the
bird’s eye view compared to the ground truth by using the meth-
ods described in [13,15]. The detected foot points calculated
according to the centroid of the blobs (people) could not provide
adequately precise results, because of perspective distortion by
the camera. By contrast, the results obtained using the multiple-
camera approach exhibited greater distortion caused by the grid-
setting property.

Because the multiple-camera approach proposed by Berclaz
et al. [9] is the most related to the proposed method, the accuracy
of results obtained by applying these two method in people detec-
tion were evaluated. The false positive rate (FPR) and false negative
rate (FNR) were calculated as follows:

FPR ¼ FP
FP þ TN

;

FNR ¼ FN
TP þ FN

;

ð14Þ

where FP (false positive) is the number of falsely detected foot
points while ground truth does not contain any points, FN (false
negative) is the number of points where tracking results does not
contain any point while ground truth contains at least one point,
TP (true positive) is the number of correctly detected foot points
where both ground truth and tracking results agree on the presence
of people, and TN (true negative) is the number of points where
both ground truth and tracking results agree on the absence of
any people. The accuracy can be calculated as follows:
different views (a) far view, (b) close view, and (c) the plane with a landmark.



Fig. 13. The results for the bright scenes: (a) before occlusion, (b) occlusion in c2, (c) occlusion in c1, and (d) the obtained trajectories after occlusion.

Fig. 14. The results for the dark scene after occlusion. The proposed scheme can completely obtain two trajectories belonging to two persons.

46 S.-W. Sun et al. / J. Vis. Commun. Image R. 35 (2016) 36–54
Accuracy ¼ TP þ TN
TP þ FP þ FN þ TN

: ð15Þ

Fig. 18(a) shows that, on average, the proposed method pro-
vided both a low FPR and FNR as well as high accuracy. Fig. 18(b)
depicts the detailed results obtained at each setting. It is obvious
that, by comparing to Berclaz et al.’s [9] method, the proposed
method achieves much lower FPR and FNR simultaneously, with
much higher accuracy.

Fig. 19(a) shows the overall foreground people and trajectory
detection results. The ground truth in the tests was two people
walking in the field of view in two trajectories. The people were
accurately detected using the side-view infrared depth cameras
in the Kinect cameras by fusing the trajectories among different
views. A false positive occurred when the method of Ozturk et al.
[13] was applied because the people were separately detected
before and after occlusion to generate additional trajectories. The
false negative results obtained when the method of Ozturk et al.
[13] was applied were due to inability when using a conventional
frame differencing technique to detect people from the color
channel in an extremely dark situation; Fig. 19(b) depicts the
detailed results. Both the proposed method and that developed
by Baum et al. [15] yielded accurate results. The proposed
method can be used to capture people in the field of view from
the side and manage occlusion, whereas that by Baum et al.
[15] can capture images from a bird’s eye view with no occlusion.
In applications for which mounting cameras to provide a bird’s
eye view is infeasible, the proposed method can be used to detect
and track people moving within the field of view. In addition,
similar to the performance evaluation of multi-camera human
detection/tracking in [27], the representative people detection
results in three different scenes with bright and dark lighting
conditions are shown in Fig. 20. It is obvious that the proposed
method achieves the best performance, with almost zero people
detection error in most of the cases. The detection errors



Fig. 15. Comparison to the state-of-the-art methods (a) captured frame in the color channel, (b) proposed method based on Kinect foreground detection results, (c) Berclaz
et al. [9], (d) Ozturk et al. [13], and (e) Baum et al. [15]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 16. The detected foot point j0Fmt;cv depicted in the synergy point of view: (a) movement trajectory, (b) manually labeled ground truth, (c) proposed method, (d) Berclaz et al.
[9], (e) Ozturk et al. [13], and (f) Baum et al. [15].
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happened in [9,13,15] are caused by too dark lighting condition,
occlusion, and too close situations.
5.2.4. Extensive tests
Because the method of Berclaz et al. [9] also mounted the multi-

cameras at the side view, we arrange people to walk into the field
of view from one person to four persons moving in the area. The
testing environment, people moving field of view, and lighting
conditions are shown in Fig. 21.
For the people staying very close situations, our method is com-
pared with the method proposed by Berclaz et al. [9], as shown in
Fig. 22(a) and (b). One of persons is severely occluded by another
from frame 65 to frame 74 in view c2, but the tracking issue can still
be compensated by the other views without occlusion situations
according to the proposed skeleton-based pairwise trajectorymatch-
ing scheme. However, with satisfactory foreground detection results
in non-occlusion views c1 and c3 of [9], the final tracking results in
Fig. 22(c) of the proposed method and [9] can both provide sepa-
rately correct people tracking trajectories in the field of view.



Fig. 17. The distortion results of the detected person’s foot point from the ground truth in the synergy point of view to the detected position j0Fmt;cv in the pixel level accuracy: (a)
the overall results, and (b) the detail results in different scenes.

Fig. 18. The results false negative rate (FNR), false positive rate (FPR), and accuracy in the tests: (a) the overall results, and (b) the detail results in different scenes.

48 S.-W. Sun et al. / J. Vis. Commun. Image R. 35 (2016) 36–54
When six persons staying in the field of view from the begin-
ning, as shown in Fig. 23(a) and (b), the six persons can be sepa-
rately detected by the depth camera c1, many people partially
occluded in c3, and severely occluded in c2 from frame 54 to frame
64 (without any skeletons), for the proposed method. By compen-
sating from the non-occlusion views to the occlusion views, the
proposed method can still provide satisfactory results, as shown
in Fig. 23(c). However, the severe occlusion issue cause [9] cannot
properly detect people from the color frames in different views,
and the people detection, tracking, and trajectories are affected
by imperfect foreground detection.

On the other hand, the extensive overall results of the tests in
bright conditions and dark conditions are shown in Fig. 24. Because
of using the infrared-base Kinect camera for obtaining the depth
data in the proposed method, as shown in Fig. 24(b), even in the
dark lighting condition, the proposed can still successfully detect
the moving people. We should notice that, the conventional Kinect
sdk 1.8 can only track two persons with skeletons. In the six
persons test, although the freely moving persons are very easily
occluded by each other (Fig. 23(a)) when moving to different
places, even with severe occlusion situations in the filed view,
the proposed pairwise trajectory matching scheme can compen-
sate the tracking results from the other views without occlusion
issues for generating reliable trajectories, as shown in the right-
most figure of Fig. 24(c). Furthermore, with the proposed pair-
wise trajectory matching scheme, in overall, the proposed method
has higher accuracy with lower FNR and FPR, as shown in Fig. 24
(d).

5.3. Time complexity

The comparison of computational complexity is shown by
frame per second (fps): the proposed method (28.51 fps, greatest
number of fps), Berclaz et al. [9] (1.82 fps), Ozturk et al. [13]
(16.67 fps), and Baum et al. [15] (10.29 fps) in the overall results.
Only the proposed method and [9] are multiple cameras scenarios.



Fig. 19. The results of the detected trajectories with the ground truth: 2 persons in the field of view as the foreground objects and with 2 trajectories. (a) The overall results,
and (b) the detail results in different scenes.

Fig. 20. Results for number of people detection error in different scenes from the most severe consecutive frames in the test video sequences: (a) Bright Studio, (b) Dark
Studio, (c) Bright Lab, (d) Dark Lab, (e) Bright Lobby, and (f) Dark Lobby.
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(a) lab scene, Bright Lab − E, Bright Lab − Crowded (upper), and Dark Lab − E (bottom)

(b) sidewalk scene, Bright Sidewalk − E (upper) and Dark Sidewalk − E (bottom)

Fig. 21. Extensive tests for Lab and Sidewalk scenes from the color channels. Dashed blue rectangle are with the size 2.0 m � 2.0 m and 2.3 m � 2.4 m, correspondingly. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The computational complexity experiments were performed using
a computer with an Intel Core i7, a 2.67-GHz CPU, and an 8-GB
RAM. Therefore, according to the results, the proposed method is
suitable for realtime applications.

6. Conclusions

This paper proposes a pairwise trajectory matching scheme that
involves fusing the detected trajectories from multiple depth cam-
eras to reduce mistracking during occlusion. Based on the skeleton
and joints of a person analyzed using a Kinect camera, the foot
points (joints) can be used to track people when cameras have
overlapping fields of view. Using homography transformation
among views with Kalman filter for people tracking, the proposed
pairwise trajectory matching method can compensate for occlu-
sion in the synergistic virtual bird’s eye view. The contribution of
this paper is trifold: (1) A hand-gesture-triggered calibration
process, with a natural user interface, allows general users (not
computer vision experts) to effectively create geometries
among multiple infrared depth cameras, through a temporal syn-
chronization to achieve cross-camera calibration. (2) To extend
the number of tracked persons with skeletons, we proposed an
interleaving-based skeleton obtaining and moving average based
valid skeleton determination. (3) Occlusion is satisfactorily man-
aged by using the proposed pairwise trajectory matching scheme.
In addition, in the crowded scene with extensive tests, the



(a) frame 63-72

(b) frame 73-82

(c) the detection results in the field of view

Fig. 22. The tracking results of one person occluding another, from the test video sequence Bright Lab-E.
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(a) frame 54-63

(b) frame 64-73

(c) frame 64-73

Fig. 23. Results of six persons simultaneously freely moving, from the test video sequence Bright Lab-Crowded.
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proposed method can compensate the tracking capability from the
non-occluded views to the occluded views, with low computa-
tional complexity, which is suitable for realtime applications.
Moreover, by using infrared depth cameras, people can be tracked
closely from bright to extremely dark environments, even when
occlusion occurs.



(a) results of the bright lighting condition

(b) results of the dark lighting condition (Method of Berclaz et al. [9] has poor results because of using the color information)

(c) trajectories of the tracking results of the proposed method, tested with a dark lighting condition with four persons and six freely moving persons

(d) overall results (left) and detail results (right) of FPR, FNR, and Accuracy

Fig. 24. People detection results of bright/dark lighting conditions.
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