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Abstract With the explosive growth in the number of music albums produced, retrieving
music information has become a critical aspect of managing music data. Extracting frequency
parameters directly from the compressed files to represent music greatly benefits processing
speed when working on a large database. In this study, we focused on advanced audio coding
(AAC) files and analyzed the disparity in frequency expression between discrete Fourier
transform and discrete cosine transform, considered the frequency resolution to select the
appropriate frequency range, and developed a direct chroma feature-transformation method in
the AAC transform domain. An added challenge to using AAC files directly is long/short
window switching, ignoring which may result in inaccurate frequency mapping and inefficient
information retrieval. For a short window in particular, we propose a peak-competition method
to enhance the pitch information that does not include ambiguous frequency components when
combining eight subframes. Moreover, for chroma feature segmentation, we propose a simple
dynamic-segmentation method to replace the complex computation of beat tracking. Our
experimental results show that the proposed method increased the accuracy rate by approxi-
mately 7 % in Top-1 search results over transform-domain methods described previously and
performed nearly as effectively as state-of-the-art waveform-domain approaches did.

Keywords AAC . Transform domain . Chroma feature . Audio coding .Music information
retrieval

1 Introduction

Music is an integral part of human entertainment and is created in diverse forms, demonstrat-
ing the ability to soothe the emotions of listeners. With the rapid development of multimedia
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and the explosive growth in the amount of music produced, storing music data has evolved
from Gramophone records to recent digital sample compression. Moreover, with the increasing
accumulation of digital music data, music management has become a key research area.

Retrieving music information enables users to identify songs quickly that may have
unknown melodies or limited music information. The method used to describe music visual-
ization for computers is an interesting topic: Mid-level characteristics such as tone and
harmony are generally considered basic features of the music representation used for distinct
musical identification tasks. The most widely used feature is the pitch-class profile (PCP), also
known as chroma, which forms a 12-dimensional vector to represent the intensity of 12
semitones [10]. By using the PCP extraction method, the input signal is first transformed into
discrete time frequencies by using discrete Fourier transform (DFT), and the frequency bins
are mapped to a 12-tone equal temperament. All of the pitch contents are folded into a single
octave and comprise a chromagram. Several different chroma-based transformations similar to
PCP have been proposed, such as chroma DCT-reduced log pitch (CRP) developed using pitch
filters and discrete cosine transform (DCT) [16] and Constant-Q transform that generates a 36-
bin chromagram [1]; all of these transformations are designed to enhance chroma
representation.

Most audio files available on Internet are compressed files. In many of the well-known
audio-coding techniques such as MPEG-1 layer 3 (MP3) and advanced audio coding (AAC),
transform coding is used to process signals in the frequency domain. The transform coding
structure can reduce data rate over ten times more than waveform coding can [12, 13]. The
signals are transformed into modified DCT (MDCT) coefficients, and acoustically redundant
portions are neglected to reduce date processing rate. In conventional methods used to retrieve
music information, the retrieval process requires full decoding in the first step, after which the
feature-extraction process operates on the decoded waveform signals to obtain the features that
are then matched. Intriguingly, methods used to improve the efficiency of the coding part of
the operations in modern audio encoders are similar to content analysis, despite the objectives
being distinct. Modern audio coding and music representation share a similar processing step,
in which signals are transformed to frequency coefficients, possibly using distinct transforms.
Theoretically, if compressed files are used when the retrieval process is started, the amount of
information represented in the transform domain could be as much as that in the waveform-
domain, indicating that compressed signals provide adequate frequency information for
retrieval. Furthermore, psychoacoustic models, which are used in modern audio codecs and
can remove redundancy effectively and greatly reduce the data rate, are seldom used in
conventional data-retrieval approaches. Therefore, the compression-domain approach can
provide chroma features with lower computational complexity than the waveform-domain
approach can. Based on this concept, several studies have suggested that the frequency
information that already exists in the transform domain can be extracted directly to generate
chroma features [5, 17, 19, 25]. Ravelli et al. proposed an effective method for extracting
chroma features in the compression domain for MP3, AAC, and 8xMDCT [21]; the method
was used at the optimal frequency resolution of MP3 and AAC (i.e., all frames were encoded
using a long window), but this condition is not normal for audio codecs used in real-life
applications. Furthermore, encoding the audio signal entirely by using long windows can cause
the pre-echo problem and noticeable distortion at the transient part of signal volumes [28].

In this work, we investigated the influence of direct extraction of chroma features from the
AAC transform domain by focusing on the impact of long/short window switching. The
music-retrieval system we examined is shown in Fig. 1. In the proposed method, the frequency
information in the transform domain is used directly to generate the chroma feature, avoiding
the synthesis-then-analysis procedure used in conventional methods. The proposed method
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was designed to perform low-complexity operations and concomitantly retrieving music data
as effectively as conventional methods do.

The remainder of this paper is structured as follows: Section 2 provides a brief review of
work related to the MPEG-2 AAC codec. Section 3 contains the details of the proposed
method, including long/short window processing, chroma mapping, and frequency selection.
The criteria for evaluating music-retrieval performance are described in Section 4.
Experimental analysis and comparison results are reported in Section 5, and our conclusions
are presented in Section 6.

2 Analysis of AAC characteristics

2.1 MPEG-2 AAC codec

MPEG-2 AAC was established as an international standard in 1997 [13]. The aim of this
development was to attain “indistinguishable” audio quality at data rates of 320 kbit/s for five
full-bandwidth channel audio signals. To this end, AAC integrates the coding efficiency of a
high-resolution filter bank, prediction techniques, and Huffman coding to achieve broadcast-
quality audio at extremely low data rates. AAC is still considered the state-of-the art scheme
both for compression and for quality of audio coding.

For the AAC decoding functions, Tsi and Liu analyzed the hardware; this is summarized in
Table 1 [27]. The filter bank consists of the inverse-MDCT (IMDCT) operation, windowing,
and overlap, which account for more than 70 % of the computational complexity in the
decoding flow. This part can be omitted using a compression-domain approach. By contrast, in
a decode-then-extract approach, although the IMDCToperation adopts a fast Fourier transform
(FFT) architecture to reduce computational complexity toO(N×log2N), the total complexity of
traditional chroma mapping in frequency transformation is the sum of IMDCT and FFT: O(N×
log2N) plus O(N/2×log2N). This consumption is a heavy load both for large databases and for
multitudinous queries for a music retrieval system.

Fig. 1 Schematic diagram of music retrieval system
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Window switching is a critical factor for audio quality. To consider both coding efficiency
and compression quality, the AAC encoder provides long and short windows that contain
2,048 and 8×256 samples, respectively. The window decision is based on the status of the
current frame, which may be either steady state or transient. For the transient frame, eight short
windows are selected as the optimal compromise between frequency selectivity and pre-echo
suppression at low data rates. Figure 2 shows the variation in window shape for a transient
condition that consists of long_stop, eight short, and long_start windows.

2.2 Frequency resolution and time resolution

The objective of audio coding is reducing data rates for audio files while preserving audio
quality. In addition to the coding technique used, the sampling rate strongly affects audio
quality. High sampling rates generally benefit audio performance but may not be necessary for
retrieving music information. Chroma feature extraction at high sampling frequency may
generate too many features to be matched and redundant high-frequency components.
Chroma features are extracted primarily from the fundamental frequency of notes in a short
period. However, musicians rarely play notes on musical instruments that are higher than the
eighth octave (approximately 8 kHz). Thus, high-frequency components are discarded com-
monly during data retrieval to eliminate unnecessary noise. Moreover, because the frequency

Table 1 Complexity analysis of
AAC decoder Tools Complexity

Huffman 19.6 %

IQ 1.6 %

Rescale 1.9 %

Stereo 2.7 %

TNS 0.6 %

Inverse MDCT 73.6 %

Total 100 %

Fig. 2 Dynamic window switching for transient

7924 Multimed Tools Appl (2015) 74:7921–7942



interval of octaves increases exponentially, researchers must consider frequency resolution
when extracting the major frequency from the first few octaves. The details of 12 notes of
Western music are shown in Table 2.

Table 3 lists the distinct sampling rates for the AAC codec with window switching and 50%
overlap. The 44.1-kHz sampling rate exhibits the most effective time resolution but shows the
poorest frequency resolution. By contrast, the 16-kHz sampling rate exhibits the most effective
frequency resolution and sufficient time resolution, and it has to extract less data.

An example of a song clip is shown in Fig. 3, where Short_ratio represents the short-
window ratio that is defined as (1):

Short ratio ¼ number of short window frames

number of total frames
ð1Þ

Figure 3 shows that the signal encoded at the 44.1-kHz sampling rate explicitly allocates
short windows for the successive transient parts to preserve audio quality. However, for the
same signal encoded at a sampling rate of 16 kHz, the AAC codec becomes more sensitive to
the transient parts of the signal, which cause the short-window ratio to increase considerably.

2.3 Impact of MDCT and DFT

DFT is the transform used most commonly to transfer discrete signals into the frequency
domain. The frequency index of DFT starts at 0 Hz with equal space for latter indices, meaning
that the frequency of each index consists of a multiple [7], which is defined as follows:

XDFT kð Þ ¼
XN−1

n¼0
x nð Þ⋅e− j 2πkn

Nð Þ; k ¼ 0; 1;…;N−1: ð2Þ

where k represents the frequency index, N is the number of sampling points in each frame, and
x is the input signal in the time domain. However, unlike with DFT, the frequency of the
MDCTcoefficient has an fs/2N shift, and thus the first MDCTcoefficient does not start at 0 Hz.
With fs as the sampling frequency, the MDCT is defined as follows:

XMDCT kð Þ ¼
XN−1

n¼0
x nð Þh nð Þcos 2π

N
k þ 1

2

� �
nþ 1

2
þ N

4

� �� �
k ¼ 0; 1;…;

N

2
−1: ð3Þ

Furthermore,

XMDCT kð Þ ¼ Re
XN−1

n¼0

x nð Þh nð Þ⋅e− j
2π kþ1

2ð Þ nþ1
2þ

N
4ð Þ

N

� �8<
:

9=
;

¼ Re
XN−1

n¼0
x nð Þh nð Þ⋅e− j 2πkn

Nð Þ⋅e− j 2πk
N

1
2þN

4ð Þð Þ⋅ e− j
2πn
N

1
2ð Þð Þ⋅e− j 2π

N
1
4þN

8ð Þð Þn o ð4Þ

where h(n) is a window function that is mentioned in Section 2. The MDCTcan be represented
as the real part of the Fourier transform with a 1/2+N/4 temporal delay in the windowing
signal, a 1/2 shift in angular frequency, and a phase shift that corresponds to the length of
sampling points [6]. The restrictions on the optimal reconstruction of the window function are
expressed as follows [15]:

h nð Þ ¼ h N−1−kð Þ
h2 nð Þ þ h2 nþ N

2

� �
¼ 1
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The following example addresses the impact of distinct central frequencies in DFT and MDCT.
Two sinusoidal signals of 15.63 and 19.53 Hz are generated at the 16-kHz sampling rate using a
Hanning window (2,048 samples). These two signals are the exact central frequencies of the third
indices of DFT and MDCT, respectively, and the magnitude responses are shown in Fig. 4. As
shown in Fig. 4a, the 15.63-Hz signal reveals a peak in the DFTspectrum, butMDCTdistributes the
energy to the nearby indices. By contrast, Fig. 4b shows that with the 19.53-Hz signal, a peak
appears in theMDCTspectrum,whereasDFT forms a flat energy spectrumbetween several indices.
Accurate frequency mapping is critical for chroma feature extraction.

3 Proposed method

3.1 Feature-extraction algorithm

An overview of the proposed mapping procedure is presented in Fig. 5. Before chroma
mapping, MDCT coefficients are extracted from the AAC bitstream and only the magnitude
is retained for later use. Long window frames (LWFs) are first mapped to the chroma feature,
which is also used to reconstruct part of the chroma feature in short window frames (SWFs).
The detailed processing of long and short window frames is described next.

Fig. 3 Beatles-Yesterday, Top: temporal waveform. Middle: window flag at 44.1 kHz sampling rate. Bottom:
window flag at 16 kHz sampling rate

Table 3 List of frequency resolution and time resolution in different sampling rate

Sampling rate Long window Short window

Frequency resolution Time resolution Frequency resolution Time resolution

44.1 kHz 21.5 Hz 0.023 s 173.3 Hz 0.006 s

32 kHz 15.6 Hz 0.032 s 125 Hz 0.008 s

16 kHz 7.8 Hz 0.064 s 62.5 Hz 0.016 s
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3.2 Long window frame processing

In the LWF, a magnitude threshold is used to eliminate weak harmonic components and to
enhance note representation. The valid MDCT component is defined as follows:

X
0
kð Þ ¼ XMDCT kð Þ; if XMDCT kð Þ > Ω XMDCTð Þ

0; otherwise

�
ð5Þ

where

Ω XMDCTð Þ ¼ ∑kXMDCT kð Þ
U ; k ¼ c1; c1 þ 1;…; c2 and

c1 ¼ f min
resf

þ 1

2
; c2 ¼ f max

resf
þ 1

2
; resf ¼ f s

N
: ð6Þ

In (5), k is one of the valid frequency components and U is the number of k; fmin
and fmax are the minimal frequency and maximal frequency that are used to determine
the bandwidth; resf is the frequency resolution of each MDCT coefficient; and and
are the ceiling and floor mathematical operations, respectively. For the chroma-
mapping method, the mapping algorithm proposed by Ravelli was modified to render
it suitable for MDCT [21], as shown below:

Bin bð Þ ¼ mod round 12log2

resf ⋅ k þ 1

2

� �
f 0

0
BB@

1
CCA

0
BB@

1
CCA; 12

0
BB@

1
CCA; b ¼ k−c1⇔b ¼ 0; 1;…; c2−c1: ð7Þ

Ch Bin bð Þ; ið Þ ¼ skip; if X
0
c1 þ bð Þ ¼ 0

Ch Bin bð Þ; ið Þ þ X
0
c1 þ bð Þ; otherwise

�
ð8Þ

Fig. 4 Magnitude response of single tone a 15.63 Hz b 19.53 Hz

Fig. 5 Chroma feature mapping block diagram
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where i is the frame index, f0 is the lowest note C0 in the 12-tone equal temperament, which is
16.352 Hz, and Bin represents the current frequency index corresponding to the semitone.
Finally, depending on (7), the energy of the major notes in a frame is added appropriately to 12
semitones in (8).

3.3 Short window frame processing

SWF processing is depicted in Fig. 6. It is observed that that the short-window flag decision
occurs not only in the true transient parts of the signal but also from the noise or erroneous
judgment. To reduce the impact from incorrect transient, consecutive SWFs that are longer than a
threshold are interpolated by neighboring long-window chroma features which have the advan-
tage of clear frequency information. A small threshold does not solve the problem from incorrect
transient, while a large threshold might lead to incorrect interpolation. A suitable threshold for the
number of consecutive SWFs was obtained by running experiments. The results showed that four
was the most suitable number. For other consecutive SWFs that are longer than four frames,
SWFs are processed using more sophisticate methods that are described in the next section.

3.3.1 Subframe combination

As mentioned in Section 2, the transient part of the signal is divided into eight subframes by
selecting short windows. However, these subframes might be highly correlated in a short
window. Here, two methods for combining subframes are suggested, and the details of the
combination methods are the following:

Intuitional method: Direct combination
An intuitive method for subframe combination that is used conventionally is the

summation of all of the subframes in an SWF into one frame. Theoretically, this

Fig. 6 Short window frame processing flowchart
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method can perform the spectral distribution of an SWF because all of the character-
istics of the subframes are preserved. Direct combination is defined as (9).

X comb kð Þ ¼
X7

r¼0
X

0
s r; kð Þ ð9Þ

Where r is the index of a subframe in an SWF Xs
′ and k represents the MDCT coefficient

index from c1 to c2.
Proposed Method: Peak competition
The proposed method was developed based on assuming that the audio files uploaded

on the internet may suffer lossy compression when received by file users or managers.
Although the human ear might not detect any deterioration in audio quality, the frequen-
cy of the signal might be shifted substantially because of having passed through many
filters or analysis/synthesis processing steps. Consequently, a frequency component that
is critical for feature extraction might not be identified in a noisy spectrum. Hence, we
propose a peak-competition method to improve the accuracy of subframe combination.
An example of a frequency shift of an SWF is shown in Fig. 7. First, we define an
“abrupt peak” (Fig. 7, red circle) and a “subduction zone” (red arrow). An “abrupt peak”
is a peak in which least one side falls to zero, and which has a frequency magnitude
higher than a specified threshold value. The “subduction zone” refers to a peak that is
hidden in a flat area. Figure 7 shows five candidate abrupt peaks that present notes with
index values of 3, 4, 5, 6, and 9; the figure also shows subduction zones in subframes 3,
4, 6, and 8. Our aim is to not only identify the most representative peak from adjacent
abrupt peaks, but to also reveal peaks hiding in subduction zones.

The next step is to combine valid MDCT coefficients in the subframes of an SWF.
The method proposed is to assign a set of weights to each MDCT coefficient to
rapidly attenuate competition failure components. The variation of the weight vector
W depends on the frequency magnitude of the subframes and a threshold value Ts,
which is defined as follows:

Ts rð Þ ¼ Gt⋅Ω X
0
s r; kð Þ

� �
ð10Þ

where Gt is a threshold gain; the weight W is calculated using (11).

W kð Þ ¼ ∏7
r¼0α r; kð Þ ð11Þ

Fig. 7 Frequency energy distribution of a short window frame
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where

α r; kð Þ ¼ Gd if X
0
s r; kð Þ≤Ts rð Þ

1 otherwise

�
ð12Þ

The attenuation factor Gd is similar to an exponent decay, which controls the slope of a
curve. As the curves with distinct attenuation factors in Fig. 8 show, when the value of Gd is
small, the curve is steep, whereas when the value of Gd high, the curve falls more gently.
Finally, the combined frame Xcomb is given as

X comb kð Þ ¼ W kð Þ
X7

r¼0
X

0
s r; kð Þ ð13Þ

Based on experiments, Gt and Gd are set to 0.1 and 0.645, values with which optimal
performance can be obtained with the proposed method; therefore, these setting of Gt and Gd

were used in all of the experiments described in this article. Figure 9 shows the combination
results of Fig. 7 obtained using direct combination and the peak-competition method. Direct
combination exhibits highly ambiguous pitches and therefore loses the prime information of an
SWF. By contrast, the peak-competition method not only maintains the main pitches but also
reduces the magnitude of ambiguous peaks substantially. The experimental results show that
the proposed method can retain pitch information effectively when combining subframes in an
SWF.

3.3.2 Interpolation

Because of the low frequency resolution in SWFs, pitch information may be lost due
to the incorrect assignment of the frequency magnitude to neighboring points. Here, an
interpolation is used to reconstruct the peaks that occur between frequency intervals. A
set of MDCT coefficients of a subframe is used as an example to analyze the effect of
the interpolators. At low frequency resolution, many pitches or harmonics are distrib-
uted to nearby indices, which are marked by arrows in Fig. 10a. For these divergent
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areas, a high order interpolator (such as a cubic spline or a Lagrange polynomial) [9,
11] is required to smooth the curve. Based on our experiments, Oetken et al. proposed
an interpolator method [18, 20] that performed optimally in interpolating two samples
to smooth the coefficients and reveal latent peaks. In this method, an optimal low-pass
filter is designed that allows the original signal to pass through unchanged and
interpolates signals in between by minimizing the mean-square error.

At the sampling rate at 16 kHz, the frequency resolution of each MDCT coefficient
of the SWF is improved from 62.5 to 20.83 Hz when interpolating two samples.

Fig. 9 Results of subframe combination a Direct combination b Peak competition

Fig. 10 Peaks of MDCT coefficient. a Original magnitude b After interpolation
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Figure 10b presents the interpolation signal obtained using Oetken’s method, with the
peaks marked by red circles; the figure shows that several areas with flat energy are
reshaped as sine trends and form peaks. These peaks are extracted using (7) to map
into chroma bins and are processed using normalization.

3.4 Frequency of notes: analysis and selection

Selecting a frequency range is critical for chroma feature mapping. In “pop” music,
the percussion often maintains a song’s beat and its frequency is below 100 Hz; by
contrast, most other instruments are played at frequencies from 130 Hz to 1 kHz,
spanning three octaves. Moreover, most musical components higher than 1 kHz are
harmonics that may influence the chroma mapping because of the multiples of pitch
components. For example, the third and fifth harmonics of C3 may map to G4 and
E5, respectively, which are in incorrect bins. Because frequency selection considers
the characteristics of musical instruments, it provides a useful method to enhance
chroma in our experiment.

Table 3 shows that the frequency resolution of the LWF at a sampling rate of 16 kHz is
7.8 Hz, which matches exactly the frequency interval at the third octave. Thus, for the LWF,
the frequency range from 124 Hz to 1 kHz was selected. However, for the SWF, pitch
information cannot be extracted readily because of low frequency resolution. Therefore, we
focus on the multiples of pitch components and interpolate two samples to obtain 20.83-Hz
frequency resolutions. Finally, the frequency selection used in the SWF ranged from 468 Hz to
2 kHz.

3.5 Complexity analysis

Comparing to the decode-then-extract approach that needs full decoding including inverse
MDCT, this compression domain approach only needs partial decoding that consumes less
than one quarter of the decoding computational complexity, as shown in Fig. 1. Our proposed
method mainly aims at improving the SWF performance with minor computational overhead.
The cover80 dataset was used to evaluate the extra processing time in addition to the partial
decoding. Experiments showed that Ravelli’s method in which feature extraction were obtain-
ed based on all long-windows increased 0.1 % computation complexity, while our proposed
method yielded 1.4 % computation complexity overhead. Considering the time saving from
skipping the inverse MDCT, the overheads from either Ravelli’s method or our proposed
method were insignificant.

4 Evaluation functions

The preceding sections describe how to process MDCT coefficients effectively for long
windows and short windows. However, the extent to which performance is improved in a
chromagram cannot be verified. Thus, a system for identifying “cover” songs was used to
evaluate chromagram representation. Compared with the original song, the cover version may
vary considerably in tempo, structure, timbre, key, or language of the vocals [23]. When an
ineffective chroma-representation method is used, the accuracy of finding the original or the
cover song is low. In the matching procedure used in this study, we adopted the algorithm
proposed by Serra et al. which contains mainly an optimal transposition index (OTI), a binary
similarity matrix (BSM), and dynamic programming local alignment (DPLA) [22, 24]. An
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additional modification, a dynamic segmentation, was used to substitute for the complex beat-
tracking operation; the proposed segmentation strategy was incorporated in this work to
improve performance.

4.1 Assessment methodology

A large dataset is appropriate for comparing music-retrieval methods objectively.
SecondHandSongs (SHS) is currently the largest dataset of cover song tasks [2], containing
12,960 training sets and 5,236 test sets. All of the songs of SHS are part of the Million Song
Dataset (MSD) [3]. However, SHS does not provide audio files that enable custom feature
extraction. In addition, most of cover songs retrieval tasks working on files at 16 kHz sampling
rate. Therefore, to compare waveform-domain retrieval methods objectively, in our experi-
ments, Cover80 and EA50 were used as evaluation datasets, in which all audio files are
converted to the AAC format at a sampling rate of 16 kHz. The Cover80 dataset has 80 song
sets of Western pop music stored in the MP3 format [8]. The EA50 dataset was obtained from
a personal collection with 50 song sets of East Asian pop music. Each song set represents an
original song and a cover song. Another dataset, DB130, combines Cover80 and EA50 to
complicate the retrieval task.

To evaluate music retrieval across experiments, a mean reciprocal rank (MRR) was used,
which is defined as

MRR ¼ 1

Q

XQ

q¼1

1

rankz
; rankz≤p

0; rankz > p

(
ð14Þ

where Q is the number of queries and rankz is the rank of the first correct answer in the list of
answer candidates z. In MRR, the reciprocal ranks of top-p are counted and averaged; in our
experiments, p was fixed as 10 [4, 14].

4.2 A simple dynamic-segmentation method

In the MPEG-2 AAC standard, the input signal is encoded frame-by-frame [13]. An average
3.5-min song has approximately 3,000 frames at a sampling rate of 16 kHz. Audio is a
continuous signal in which a preceding frame and a following frame are highly correlated.
Serra [24] reported that frame combination performed better than beat tracking when dynamic
time warping (DTW) was used for alignment. Serra’s matching method allowed deviations of
the double or half tempo, and the best performance was obtained with segment size between
0.7 and 1.16 s; however, for chroma transformation, the 36-bin harmonic pitch-class profile
(HPCP) method was used. Under distinct conditions of chroma number and chroma transfor-
mation, we propose, in addition to a fixed segment size, a dynamic-segmentation method, with
which the segment size is calculated based on the length of a song, as defined in (15).

Segsize ¼ round
8⋅M
2048

� �
ð15Þ

Segsize is limited as follows:

Seg0size ¼ max min Segsize; Segmaxð Þ; Segminð Þ
where M is the number of frames of a song. The maximal segment size Segmax and minimal
segment size Segmin were set to be 19 and 9 frames, respectively. A song with dynamic
segmentation for a fragment was limited between 0.63 and 1.28 s. The reason for using (15) is
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to allow a long adagio song and a short light song, which are common in pop music, to be
segmented with appropriate adjustments. Table 4 lists the average number of features of
dynamic segmentation and the beat tracking used by Ellis for Cover80 [8]. The statistical data
show that with dynamic segmentation, feature data were nearly 3.7-times less than the data
with beat tracking.

4.3 Optimal transposition index and binary similarity matrix

Because cover songs may be performed in a key distinct from that of the original
song, transposing the key of a chroma feature of one song to that of the other would
help similarity measurements considerably. For transposing, OTI is used to calculate
the global key difference between two songs; OTI is defined as

Tr ¼ argmaxid¼0;1;…;11 mean ChAð Þ⋅mean circshift ChB; idð Þð Þf g ð16Þ
where “ ” indicates a dot product, and circshift() is a function that rotates the vector
ChB with id positions. According to the key difference Tr, a BSM is generated:

BSM ρ;σð Þ ¼ 1; if OTIs ChA;ρ;ChB;σ
� � ¼ Tr

0; otherwise

�
ð17Þ

where ρ and σ represent the segment index of Chroma A and Chroma B, respectively.
OTIs, which calculates the note change for all of the segments between the two songs,
is defined as follows:

OTIs ρ;σð Þ ¼ argmaxid¼0;1;…;11 ChA;ρ⋅circshift ChB;σ; id
� �	 
 ð18Þ

Figure 11 presents examples of BSMs of reference/cover and reference/non-cover
songs, which show that similar songs have clear diagonal white lines in the BSM; this
prominent characteristic of the BSM can be used by the DPLA algorithm to evaluate
the similarity score.

4.4 Dynamic programming local alignment

The Smith-Waterman (SW) algorithm is used for identifying local matches in genetics [26]. In
the matching step of the proposed method, this algorithm is used to grade the similarity
between the original and cover songs [24]. First, we assume that the original song contains L1
segments and the cover song contains L2 segments, and then the (L1+1)×(L2+1) matrix SW is
created using the following recursive formula:

SW ρ;σð Þ ¼ max

SW ρ−1;σ−1ð Þ þ BSM ρ−1;σ−1ð Þ
SW ρ−2;σ−1ð Þ þ BSM ρ−1;σ−1ð Þ−α
SW ρ−1;σ−2ð Þ þ BSM ρ−1;σ−1ð Þ−β

0

8><
>: ð19Þ

for ρ ¼ 3; 4;…; L1 þ 1; σ ¼ 3; 4;…; L2 þ 1

Table 4 The average number of features for Cover80: Ellis’ beat tracking method and dynamic segmentation

Beat tracking Dynamic segmentation

Number of features 953.7 260.3
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In this formula, the BSM is used as the input to update the SW matrix recursively. The
constants α and β are used as follows:

α;β ¼ 0; if BSM ρ−1;σ−1ð Þ ¼ 1
α ¼ 0:5; β ¼ 0:6; otherwise

�
ð20Þ

Every input query creates an SW matrix with each original song in the database. Figure 12
shows examples of matching trends of similar and non-similar songs in the SW matrix. The
maximal value in the SW matrix is used as the similarity score. Finally, the retrieval result is
returned based on the ranking of the similarity scores of all songs in the database.

5 Experimental analysis

5.1 Frequency range and segmentation

To assess the impact of frequency selection and fragment size, four frequency modules with six
distinct segment sizes (Tables 5 and 6) were used for cross-experimental analyses. The
frequency ranges of Modes 1 to 3 were those used in notable previous studies, and Mode 4
used for Ravelli’s method was only processed using the long window. For preliminary

Fig. 11 BSM matrix: a Similarly songs b Non-similarly songs

Fig. 12 SW matrix: a Similarly songs b Non-similarly songs
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experiments, the Cover80 dataset was employed, and the MRRs calculated for various
combinations are shown in Table 7.

The results in Table 7 show that Ravelli’s method and the intuitional method performed
optimally in Mode 4. Except for dynamic segmentation, most of the optimal results of the
combination factor are between 7 and 15, which is consistent with previous work [24]. In our
experiments, we noted that harmonics at high frequencies affected the chroma feature mark-
edly and led to poor matching results, which may be because of the mapping errors that occur
at high frequency harmonics (explained in Section 3.4). Furthermore, Ravelli’s method
performed effectively because the SWF corresponding to the LWF has a relationship that
equals 8-times the frequency, which is merely the harmonic component of the pitch in the first
subframe. Hence, Ravelli’s method performed effectively when operating in Modes 1 and 4.

5.2 Chroma transformation evaluation for SWF

In this study, we evaluated the accuracy of chroma transformation in the SWF by assigning
distinct weights to SWFs. Because a song contains many SWFs, when most of the chroma in
SWFs are accurate, performance improves steadily when the weighting value Ws increases.
Conversely, performance deteriorates whenmost of the chroma are inaccurate. The experimental
setting is described in Table 8 and the results of varying the weighting are shown in Fig. 13.

Table 5 Different frequency range
modules Long window Short window

Mode 1 [8] 100~1 k Hz

Mode 2 100~2 k Hz

Mode 3 [24] 40~5 k Hz

Mode 4 124~1 k Hz 468~2 k Hz

Table 7 MRR within Top-10 retrieved songs in Cover80 dataset

Combination factor

3 7 11 15 19 Dynamic

Ravelli mode 1 0.4474 0.4333 0.4808 0.5176 0.4838 0.5031

Ravelli mode 2 0.2458 0.3386 0.3628 0.3592 0.3409 0.3433

Ravelli mode 3 0.3112 0.3974 0.3423 0.3320 0.3058 0.3441

Ravelli mode 4 0.4319 0.5530 0.5252 0.5252 0.4732 0.5040

Intuitional mode 1 0.4061 0.4739 0.4659 0.5101 0.5087 0.5264

Intuitional mode 2 0.4875 0.5247 0.5476 0.5362 0.5508 0.5424

Intuitional mode 3 0.3860 0.4471 0.4374 0.4727 0.4377 0.4466

Intuitional mode 4 0.4548 0.5938 0.5983 0.5702 0.5603 0.6158

Numbers in boldface indicate the highest MRR in a row

Table 6 Different combinations in time

Combination factor (Frame count) 3 7 11 15 19 Dynamic

Segment length (second) 0.256 0.512 0.768 1.024 1.280 Variable
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Figure 13 shows that Ravelli’s method exhibits the most marked decreasing trend because
SWF processing is not considered in the method. Thus, with Ravelli’s method, an increase in
weighting leads to an increase in the impact of incorrect chroma information. In the intuitional
method with interpolation, ambiguous frequency components are deemphasized
(Section 3.3.1) and low weighting can suppresses the influence of ambiguous frequency
components; therefore, this method yields better results than the proposed method with
interpolation when Ws is <0.6. However, the performance curve of the proposed method with
interpolation shows an upswing when weighting is increased, which indicates that using
interpolation contributes substantially to enhancing the chroma feature in SWFs.

5.3 Comparison of waveform-domain music-retrieval methods

We compared our method with state-of-the-art waveform-domain methods for retrieving music
as shown in Tables 9. In the reference method [22], the method names were represented as Feat
u v bpm, where u was one of the three sets of feature extraction and similarity matching (1:
chroma + cross-correlation, 2: chroma with high pass filter + corss-correlation, 3: harmonic
pitch class profile + DPLA), and v represented the beats that were tracked from three distinct
tempos. For “Top-1” experiments, the proposed method was as accurate as methods presented
in waveform-domain studies. However, in our method, the decode-then-encode procedure is
not required and the complex computation of beat tracking is replaced by simple dynamic
segmentation.

Figure 14 shows the accuracy rates in “Top-10” experiments for Ravelli’s method, the
intuitional method, and the proposed method, all used with the optimal parameter setting for

Table 8 Description of experiment setting

Dataset Segmentation Frequency selection Weighting Ws

Cover80 Dynamic Mode 4 0.1~1

Fig. 13 Results of different weights to SWFs
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evaluation with the DB130 dataset. The proposed method exhibits greater than 70 % accuracy
in Top-1 music-retrieval performance and is approximately 7 % more accurate than Ravelli’s
method.

6 Conclusion

This paper proposes a chroma-transformation method based directly on the AAC transform
domain. Unlike previous studies, we considered the impact of sampling rate, frequency
resolution, frequency range selection, and window switching to propose a chroma-
enhancement method that moderately processes the problem of frequency mapping in window
switching. Specifically, for the short window frame, using the proposed method reduces the

Table 9 Modern technique for Single tempo chroma feature comparison in Cover80 [22]

Method name Segmentation Similarity computation Correct (Top-1)

Feat 1 240 bpm 240 bpm Cross-correlation 46/80=57.50 %

Feat 1 120 bpm 120 bpm Cross-correlation 49/80=61.25 %

Feat 1 60 bpm 60 bpm Cross-correlation 45/80=56.25 %

Feat 2 240 bpm 240 bpm Cross-correlation 50/80=62.50 %

Feat 2 120 bpm 120 bpm Cross-correlation 50/80=62.50 %

Feat 2 60 bpm 60 bpm Cross-correlation 54/80=67.50 %

Feat 3 240 bpm 240 bpm DPLA 48/80=60.00 %

Feat 3 120 bpm 120 bpm DPLA 49/80=61.25 %

Feat 3 60 bpm 60 bpm DPLA 51/80=63.75 %

Ravelli’s method Frame count=7 DPLA 42/80=52.50 %

Intuitional method Dynamic DPLA 47/80=58.75 %

Proposed method Dynamic DPLA 50/80=62.50 %

Fig. 14 Top-10 retrieval accuracy rate in DB130
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distortion of frequency of MDCTcaused by multiple encoding, and using an interpolation with
the proposed method increases frequency resolution and reveals latent peaks. This frequency-
enhancement procedure helps to raise the pitch exactitude when frequency is ambiguous. We
also propose a simple dynamic-segmentation method to adjust segment size, which increases
the accuracy rate slightly more than using fixed fragment size. In conclusion, our method
provides a simpler chroma-transformation operation but retrieves music nearly as accurately as
waveform-domain methods.
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