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Abstract: An H.264 video encoder adopts multiple encoding tools to achieve high coding efficiency at the expense of
high computational complexity. The allowable computational complexity for real-time video encoding, however, is
generally limited in a wireless handset. This research proposes a complexity control mechanism that is composed of
two algorithms to minimise the distortion of each encoded video frame under the computational complexity constraint
and the rate constraint. The first proposed algorithm performs optimal complexity allocation among encoding tools
based on a new complexity– rate–distortion (C–R–D) model. This model precisely describes how each encoding tool
influences the C–R–D performance of the encoder with concise formulas. Accordingly, the algorithm obtains the
optimal complexity of each encoding tool by a closed-form solution with small complexity overhead. Based on a new
C–D model of motion estimation, this work proposes the second algorithm that performs optimal complexity
allocation among macro-blocks to further allocate suitable complexity to each macro-block. Experiments performed
on a software-optimised source code show that these two algorithms yield superior performance to the existing
algorithms.
1 Introduction

1.1 Research problem

Applications of real-time video encoding, such as video
recording and video conference, are widely equipped in
modern wireless handsets. An H.264 video encoder uses
multiple encoding tools to achieve superior rate–distortion
(R–D) performance at the expense of high computational
complexity [1]. The allowable computational complexity of
real-time video encoding, however, is generally limited in a
wireless handset because the processor has limited
computation capability. The computation capability of the
processor is further limited if power saving is considered [2,
3]. In addition, the allowable bit rate is also limited due to
limited transmission bandwidth or limited storage space.
Therefore a complexity control mechanism that well
allocates the computational complexity of video encoding
under the complexity constraint and the rate constraint is
important.

Video quality is composed of temporal quality and
spatial quality. The former is determined by the frame
rate and the latter is determined by the distortion of each
frame. To keep a high enough frame rate for acceptable
temporal quality in a complexity constrained environment
[4], the allowable computational complexity of encoding
a video frame, CFCA, is restricted. This complexity
control mechanism aims to control the video encoder so
that the distortion of each frame is minimised under the
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given complexity limit and the given rate limit RFC is
expressed as

min D

s.t.

cF ≤ CFCA

RF ≤ RFC

(1)

where D, RF and cF denote the distortion, bit rate and
computational complexity, respectively, of a frame.

For an H.264 video encoder, a frame is partitioned into a
number of macro-blocks (MBs) while an MB is the basic
encoding unit. The encoding block diagram is plotted in Fig. 1
[5]. A video encoder mainly adopts motion estimation
(ME), motion compensation (MC), intra-prediction, transform
(T ), quantisation (Q) and entropy coding to encode each MB.
T, Q, Q21 and T 21 have been collectively denoted as
PRECODING [6]. After encoding all MBs in a frame, the
video encoder performs deblocking filtering if it is enabled in
the frame layer [7].

Each encoding tool has different encoding efficiency from
each other [1, 5]. Accordingly, complexity allocation among
encoding tools (CAET) is the first key problem for
complexity-constrained video coding. After the complexity of
each encoding tool for all MBs in a frame is determined,
complexity allocation among MBs (CAMB) is the second key
IET Image Process., 2012, Vol. 6, Iss. 1, pp. 60–71
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Fig. 1 Block diagram of the H.264 video encoder
problem because each MB has different motion and context, and
hence deserves different computational complexity.

1.2 Related work

He et al. [6] proposed a complexity–rate–distortion (C–R–D)
model to address the CAET problem for power saving. This is
the first model that can be used to control complexity while
maintaining the video quality. However, this model is very
complicated. A closed-form solution of the optimisation
problem cannot be found. Alternatively, a global search which
requires a large computational overhead needs to be conducted
to find the solution. The computation overhead of a global
search might be acceptable for handset power control which
only needs to be performed once per few seconds. For
complexity control in real-time video encoding, the complexity
allocation should be performed for each frame. The
computation overhead of a global search becomes a serious
problem. Therefore a simpler C–R–D model which results in
low computation overhead is needed in practical applications.

The study [6] also proposed an algorithm of CAMB for
ME based on motion history matrix (MHM). This algorithm
uses MHM to record the static probability of each MB and
then allocates complexity to each MB based on MHM. This
algorithm works effectively for low motion videos, but
inefficiently for high motion videos because most MBs have
zero static probability that results in inaccuracy of the algorithm.

Kannangara et al. [4, 8] developed a complexity control
algorithm by identifying the MBs that are likely to be skipped
prior to motion estimation. By adjusting the SKIP mode
proportion, it can satisfy arbitrary computation constraints.
However, as Section 5 in this paper will present, the first few
searches of ME generally have high coding efficiencies.
Therefore skipping an MB sacrifices these coding efficiencies
and could hurt R–D performance. A joint complexity–
distortion optimisation approach for H.264 under complexity-
constrained environment has been proposed [9]. The work
proposed a virtual leaky bucket model to prevent encoding a
frame from consuming too much or too little computational
complexity. The complexity models of the H.264 video
decoder, which is a part of encoder, have also been studied
[10–14].

1.3 Proposed work

This work proposes a new C–R–D model of the H.264 video
encoder. It uses concise mathematical equations to describe
how each encoding tool influences the C–R–D performance
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of the encoder with high accuracy. The optimal CAET
problem based on our proposed C–R–D model has a closed-
form solution. Accordingly, the optimal complexity of each
encoding tool can be obtained with low computation
overhead. In addition, this work proposes an optimal
algorithm of CAMB for ME based on the modelling of ME
behaviour and optimisation theory [15].

1.4 Organisation of paper

This paper is organised as follows. In Section 2, we analyse
complexity consumption of each major tool and briefly review
the existing C–R–D model for comparison. Section 3 presents
our C–R–D model. Section 4 proposes the optimal algorithm
of CAET and Section 5 proposes the optimal algorithm of
CAMB, respectively. Section 6 describes how to encode video
with our complexity control method. Section 7 presents
experimental results. Finally, Section 8 draws conclusions.

2 Complexity analysis and existing
C–R–D model

2.1 Complexity analysis of encoding tools

Theoretically, a video encoder with higher computational
complexity will yield lower video distortion. Therefore the
optimal cF in (1) is presumably set to the limit CFCA. Let
cMEs, cMCs, cINTRAs, cPRECs and cENCs represent the
complexity of ME, MC, intra-prediction, PRECODING and
entropy coding, respectively, for all MBs in a frame. Also,
let cDF and cINTP represent the complexity of deblocking
filtering and interpolation, respectively. The allowable
computational complexity CFCA can be distributed by

CFCA = cMEs + cMCs + cINTRAs + cPRECs + cENCs + cDF

+ cINTP (2)

Each tool consumes distinct complexity and its complexity
control method varies. This work first analyses the
complexity consumption of each tool without complexity
control. With experiment options listed in Table 1, the
average complexity share of each tool is shown in Table 2.
To reflect the realistic complexity consumption, we utilise a
software optimised code x264 rather than JM code [5, 16,
17]. Rate–distortion optimised (RDO) mode decision is
turned off to reduce the complexity [18]. In this work,
before the half-pel ME is performed, all the half-pel points
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in a frame are obtained using 6-tap interpolation filter,
which typically consumes significant but almost constant
complexity [9]. Therefore the half-pel interpolation is
separately counted. On the other hand, the process of
quarter-pel interpolation is relatively simple. A quarter-pel
point is generated only when it is going to be used for
quarter-pel search. Therefore the quarter-pel interpolation is
included as a part of ME. As observed in many previous
works [9], ME consumes most of the total complexity. MC
complexity, which is significant in the decoder [10, 14], is
less significant in the encoder.

Deblocking filtering has high coding efficiency as we ever
proposed [19], and is beneficial for subjective quality [1]. Thus
deblocking filtering is recommended to be utilised. Its
complexity cDF can be estimated from the previous frame.
Intra-prediction is associated with significant complexity.
However, intra-prediction has relatively low coding efficiency
in P frames because most MBs in P frames choose inter-mode
unless scene change happens. As we also proposed [19],
Intra_4 × 4 prediction has very low coding efficiency for
QCIF video sequence. This work recommends using it only
when complexity is allowable after inter-prediction and
Intra_16 × 16 prediction in P frames. Since Intra_16 × 16
prediction is important to scene-changed P frames,
Intra_16 × 16 prediction which consumes roughly 4%
complexity is recommended to be used. Therefore in solving
CAET problem, we simplify the problem by focusing on
complexity allocation among ME, PRECODING and entropy
coding

CFC = cMEs + cPRECs + cENCs (3)

where CFC denotes the result of subtracting cMCs, cINTRAs, cDF

and cINTP from CFCA.

2.2 Existing C–R–D model

According to the work proposed by He et al. [6] for MPEG4
video encoding, cMEs can be scaled by the number of search

Table 1 Options for complexity analysis

CPU Intel Pentium 4 2.66 GHz

RAM 512 M bytes

MMX tech. on for SAD, SATD computation,

and 6 tap interpolation filter

source code of H.264 x264

fast ME diamond

number of reference frames 1

GOP type IPPPP

RDO mode decision off

frame rate 30

test sequences Akiyo, Suzie, Carphone, Foreman,

Stefan, Mobile QCIF
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points x as

cMEs = C1x (4)

where C1 represents the complexity of searching one point. In
other words, the complexity of ME can be represented by the
number of search points.

Since the PRECODING process for each MB is identical, the
PRECODING complexity of an MB, C2, is treated as a constant.
Accordingly, [6] scaled the PRECODING complexity of a
frame, cPRECs, by the number of MBs to be encoded by
PRECODING, l, as

cPRECs = C2l (5)

that is, cPRECs can be represented by the number of MBs that
need PRECODING, and all other MBs will have zero
PRECODING output. The complexity of entropy coding,
cENCs, was modelled proportional to the bit rate R as

cENCs = C3R (6)

where C3 represents the complexity of encoding one bit by
entropy coding. We show that this model is still accurate for
both CABAC and CAVLC of the H.264 encoder in Fig. 2. C1,
C2 and C3 can be regarded as constants for a video encoding
system.

Let M denotes the number of MBs in a frame. Let s2
i

represent the sum of square difference (SSD) after ME for
ith MB and {s2

i |i ¼ 1, 2, . . . , M} represent the set of SSD
for all MBs in a video frame in ascending order. A C–R–D

Fig. 2 Actual and modelled complexity of entropy coding
for Stefan sequence when QP is 32
Table 2 Complexity share (CS%) of each encoding tool

ME Intra-prediction MC PRECODING CABAC Deblocking filter 6-Tap interpolation

CS(QP ¼ 28) 57 9 2 14 10 5 4

CS(QP ¼ 32) 58 11 2 14 6 5 4

CS(QP ¼ 28, no Intra_4 × 4) 61 4 2 14 10 5 4

CS(QP ¼ 32, no Intra_4 × 4) 63 4 2 15 7 5 4
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model of PRECODING is proposed as [6]

D =
∑M
i=1

s2
i

( )
1 − l

M

( )2

+ 2l

M
1 + a0l

M

( )[
· 2−2g(MRF/l)

]

where a0 = 1

e
+ 1

e3
− 1 (7)

where g is a model constant. This model is complicated in
analysis because the PRECODING complexity l appears in
the exponential term.

The work [6] also proposed a C–D model of ME as

∑M
i=1

s2
i = a+ be−tx (8)

where a, b and t are model constants.
By combining (7) and (8), the first C–R–D model of the

video encoder proposed in [6] is

D = (a+ be−tx) 1 − l

M

( )2

+ 2l

M
1 + a0l

M

( )
· 2−2g(MRF/l)

[ ]

(9)

The optimal CAET problem based on (9) is

min D = min (a+ be−tx) 1 − l

M

( )2

+ 2l

M
1 + a0l

M

( )[{

· 2−2g(MRF/l)

]}

s.t.

C1x + C2l + C3RF = CFC

(10)

By solving this problem, the optimal ME complexity and
PRECODING complexity can be obtained. However, this
problem is too complicated for a closed-form solution and
should be solved by global searching.

3 Proposed C–R–D model

Since the encoding tools in H.264 is much more complicated
than that in MPEG4, the assumptions used in MEPG4 cannot
be hold in H.264. We need to verify each step and incorporate
the effects of additional tools into the new model.

3.1 C–R–D model of PRECODING

According to the classical R–D theory [20], the R–D model
of a quantiser can be expressed by

D = s22−gRF (11)

where s2 represents the variance of a frame and g is a model
constant. By testing various video sequences, we discover
that the R–D model of PRECODING can be modelled as

D =
∑M
i=1

s2
i

( )
2−gRF (12)
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where SM
i=1s

2
i represents the total residual signals measured by

SSD in a frame. Fig. 3 shows the R–D curves of Foreman
sequence. The PRECODING process for each MB whose
prediction mode is not Intra_16 × 16 is the same. For the
Intra_16 × 16 MB, additional 4 × 4 luma DC coefficients
should be transformed and quantised. We observe that this
additional process just increases 4% complexity. Therefore
the PRECODING complexity of an MB is almost a constant.
Thus, encoding an MB with larger residual signal by
PRECODING is more efficient since larger distortion can be
avoided with the same computational complexity. In the
condition that only l MBs is allowed for PRECODING, an
effective strategy is to select the l MBs with greater residual
signals for PRECODING [6, 21]. The MB without
PRECODING is still inter-predicted and intra-predicted but
no bit is allocated to the residual signal. Therefore the
distortion of the M 2 l MBs with smaller residual signals can
be degenerated to S

M−l
i=1 s2

i . This research proposes an R–D
model of PRECODING for a frame as

D =
∑M−l

i=1

s2
i +

∑M
i=M−l+1

s2
i

( )
2−gRF (13)

which can be rewritten as

D =
∑M
i=1

s2
i

( )
S

M−l
i=1 s2

i

S
M
i=1s

2
i

+ 1 − S
M−l
i=1 s2

i

S
M
i=1s

2
i

( )
2−gRF

[ ]
(14)

The curve ofs2 against MB index has been modelled as a linear
equation [6]

s2
i ≃ Ai (15)

where A is a constant. The linear relationship of this model is
confirmed by our experimental results shown in Fig. 4 except
for those MBs with the largest SSD. Note that the ratio of the
residual of MBs without PRECODING to the residual of

Fig. 3 R–D curves of PRECODING for various frames in
Foreman
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Fig. 4 Sorted residual signals against MB index in a frame
total MBs can be formulated as a quadratic function of l

S
M−l
i=1 s2

i

S
M
i=1s

2
i

= ASM−l
i=1 i

ASM
i=1i

= (M − l)(M − l + 1)/2

M (M + 1)/2

≃ (M − l)2

M2
= 1 − l

M

( )2

(16)

Then the distortion in (14) can be expressed as

D =
∑M
i=1

s2
i

( )
1 − l

M

( )2

+ 2l

M
− l2

M2

( )
2−gRF

[ ]
(17)

This is our C–R–D model for PRECODING. As Fig. 5 shows,
the accuracy of this model is similar to the existing model of (7)
but the complexity of this model is substantially reduced.

3.2 C–D model of ME

As mentioned in Section 2, ME complexity was scaled by the
number of search points for MPEG4 video encoder [6]. For the
H.264 video encoder, the fractional-pel search is
recommended to use sum of absolute transformed difference
(SATD) to obtain the cost, whereas the full-pel search uses
sum of absolute difference (SAD) [18]. In addition, a
fractional-pel search needs interpolation. Therefore the
complexity of a fractional-pel search is greater than that of a
full-pel search. Using distinct interpolation filters, a quarter-
pel search consumes different complexity than a half-pel
search does. In our work, we follow (4) but redefine C1, the
ME complexity unit, as the complexity of a full-pel search
(CFPS) and x as the number of CFPS. The complexity of a
half-pel search and that of a quarter-pel search can then be
expressed as a number of CFPS.

By observing the C–D curves of various frames in various
video sequences shown in Fig. 6, we find the total residual
signals measured by SSD is approximately inversely
proportional to ME complexity and propose a concise ME
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model as

∑M
i=1

s2
i = a+ bx−1 (18)

where a and b are model constants. As Fig. 6 shows, the
existing model (8) underestimates the coding efficiency
when ME complexity is low for many video sequences
such as Akiyo. The proposed model (18) is more accurate
and simpler in derivation.

3.3 Proposed overall C–R–D model

By combining (17) and (18), we propose a new C–R–D
model of the H.264 video encoder as

D = (a+ bx−1) 1 − l

M

( )2

+ 2l

M
− l2

M2

( )
· 2−gRF

[ ]
(19)

As Fig. 7 shows, this model is more accurate and simpler in
derivation than the previous model presented by (9). The
optimal CAET problem based on the new model is

min D=min (a+bx−1) 1− l

M

( )2

+ 2l

M
− l2

M2

( )
2−gRF

[ ]{ }

s.t.

C1x+C2l+C3RF =CFC

x . 0

l ≥ 0 (20)

l ≤M

RF ≥ 0

RF ≤RFC
IET Image Process., 2012, Vol. 6, Iss. 1, pp. 60–71
doi: 10.1049/iet-ipr.2010.0149



www.ietdl.org
Fig. 5 C–R–D models of PRECODING for frame 50 in Foreman
sequence

a Actual curve
b Estimated by the model in [6]
c Estimated by our proposed model
IET Image Process., 2012, Vol. 6, Iss. 1, pp. 60–71
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Problem (20) is still complex for a closed-form solution
because the rate RF is a variable in the exponential term. In
complexity-unconstrained case, the minimal D can be
obtained when RF equals RFC. In complexity-constrained
case, a higher bit rate corresponds to higher complexity of
entropy coding as described in (6) and the allowable
complexity of ME and PRECODING become less. To obtain
the optimal rate, experiments are conducted with options
shown in Table 1 and the optimum solutions are obtained by
global searches [15].

The minimal distortion, optimal x, l and R are plotted in
Fig. 8. According to the simulations above, the optimal rate
RF equals RFC if CFC is not exceptionally small, for
example, greater than 2 MHz in this simulation. If CFC is
exceptionally small, it is not suitable to run a video
encoding process in a portable device anyway. Therefore
the optimal CAET problem can be simplified as

D = (a+ bx−1) 1 − l

M

( )2

+ 2l

M
− l2

M2

( )
2−gRFC

[ ]

s.t.

C1x + C2l + C3RFC = CFC

g1 ; x . 0

g2 ; l ≥ 0

g3 ; l − M ≤ 0

(21)

Problem (21) can be solved into a closed form as Section 4
presents.

4 Optimal algorithm of CAET

This section solves the optimisation problem (21) according
to optimisation theory. The problem is a convex
optimisation problem as Fig. 7c shows. Because of the
convex property, a local minimiser is definitely a global
minimiser. To obtain a local minimiser, we should consider
that each inequality constraint is active ( gi ¼ 0, i ¼ 1, 2, 3)
or inactive separately [15]. As Fig. 8 shows, x is greater
than 0 in general cases. l is also greater than 0 if CFC is not
exceptionally small. l is smaller than M if CFC is not
sufficiently large and is equal to M otherwise. Accordingly,
two general cases are discussed as follows.

4.1 Case 1: x . 0, l . 0 and l , M

In this case, the available complexity for encoding a frame is
not sufficiently large to encode all MBs with PRECODING.
With the derivations for optimal solution, a cubic equation
is derived as

l3 − M + 2b

k
+ b

2ak

( )
l2 + b2

k2
+ bb

ak2
+ 2bM

k

( )
l

− b2M

k2
+ bbM

ak2
− bM2

(1 − a)2ak

[ ]
= 0 (22)

where

a ; 2−gRFC (23)
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Fig. 6 C–D curves of ME

‘act’: actual curve; ‘exp’: the curve estimated by the model in [6]; ‘inv’: the curve estimated by our proposed model
b ;
CFC

C1

− C3

C1

RFC (24)

k ;
C2

C1

(25)

Set

s ; − M + 2b

k
+ b

2ak

( )
(26)

u ;
b2

k2
+ bb

ak2
+ 2 bM

k

( )
(27)

v ; − b2M

k2
+ b bM

ak2
− bM2

(1 − a)2ak

[ ]
(28)

p ; u − s2

3
(29)

q ;
2

27
s3 − s

3
u + v (30)
66

& The Institution of Engineering and Technology 2012
One real root of (22) can be obtained [22] as

l1 = −q +
����������������
q2 + (4/27)p3

√
2

( )(1/3)

+ −q −
����������������
q2 + (4/27)p3

√
2

( )(1/3)

− s

3
(31)

Obtain x1 by putting l1 to the first constraint in (21)

x = CFC

C1

− C3

C1

RFC − C2

C1

l (32)

If (x1, l1) satisfies x . 0, l . 0 and l , M, it is the solution.
Else, the discriminate of (22) defined as (33) is checked.

D = 4p3 + 27q2 (33)

If D ≥ 0, l1 is the only real root, go to case 2. Else, divide (22)
by (l 2 l1), which results in a quadratic equation. Find the two
roots l2 and l3 of the equation by quadratic formula and obtain
x2 and x3 by (32). If either pair of them meets x . 0, l . 0 and
l , M, it is a global minimiser. Else, go to case 2.
IET Image Process., 2012, Vol. 6, Iss. 1, pp. 60–71
doi: 10.1049/iet-ipr.2010.0149



www.ietdl.org
4.2 Case 2: x . 0, l . 0 and l ¼M

In this case, the available complexity for encoding a frame is
sufficiently large to encode all MBs with PRECODING, that

Fig. 7 C–R–D curves of the overall video encoder for frame 50 in
Foreman sequence with RFC ¼ 3200 bits

a Actual curve
b Estimated by the model in [6]
c Estimated by our model
IET Image Process., 2012, Vol. 6, Iss. 1, pp. 60–71
doi: 10.1049/iet-ipr.2010.0149
is, l is equal to M. Obtain x by (32). After CAET is performed
for a frame, CAMB needs to be performed to allocate
complexity to each MB.

Fig. 8 Optimal ME complexity, PRECODING complexity and rate
under various complexity and rate constraints

Cfc and Rfc in the figure mean complexity constraint CFC and rate constraint
RFC in the article, respectively
67
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5 Optimal algorithm of CAMB

5.1 CAMB for PRECODING and entropy coding

The complexity of PRECODING of a frame cPRECs,
obtained by CAET, must be allocated to the l MBs with
larger residual signals before the first MB is encoded by
PRECODING. For a general H.264 video encoder,
however, the actual residual signals of all MBs cannot be
obtained until the last MB is motion compensated and the
other MBs are encoded completely. This work discovers
that the residual signal of the MB is proportional to that
of the co-located MB in the previous frame. Accordingly,
this work suggests the l MBs, whose co-located MBs in

Fig. 9 Cost against ME complexity curves of various MBs

‘act’: actual curve; ‘inv’: estimated by our model
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the previous frame have larger residual signals, are
selected for PRECODING.

The residual signal of the l MBs should be quantised with a
proper QP to meet the target rate. Once the bit rate is
controlled, the complexity of entropy coding is also
controlled. The complexity allocation of ME to each MB is
the most important part because ME consumes most
complexity.

5.2 CAMB for ME

The general objective of ME is to minimise the R–D cost for
each MB [18, 23]. In the complexity-constrained case, rather
than minimising the cost individually, the optimal ME is to
minimise the cost of all MBs in a frame, which can be
formulated as

min f = min
∑M
i=1

cost (i)

s.t.

∑M
i=1

ci = cMEs

(34)

where cost(i) and ci denote the R–D cost and the ME
complexity, respectively, of ith MB, and cMEs is obtained
by CAET.

By testing various video sequences, we discover that the
C–D model of ME for an MB is also suitable to be
Fig. 10 b against COST 02 curves in a frame
IET Image Process., 2012, Vol. 6, Iss. 1, pp. 60–71
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modelled as

cost (i) = ai + bic
−1
i (35)

Fig. 9 shows the C–D model of Foreman sequence. The
parameters ai, bi are model constants. ai represents
information and bi represents redundancy. The optimal
complexity allocation can be formulated as

min f (cv) = min
∑M
i=1

(ai + bic
−1
i )

s.t.

∑M
i=1

ci = cMEs

ci ≥ 0, i = 1, 2, . . . , M

where cv ; [c1, c2, . . . , cM ]

(36)

Equation (36) is a convex optimisation problem. Owing to
this property, a local minimiser is a global minimiser which

can be obtained as follows

∂f

∂ci

+ l
∂(SM

i=1ci − cMEs)

∂ci

= 0, i = 1, 2, . . . , M (37)

which can be derived to

− bic
−2
i + l = 0, i = 1, 2, . . . , M (38)

Therefore

l = bic
−2
i = b1c−2

1 , i = 1, 2, . . . , M (39)

ci =
bi

b1

( )(1/2)

c1, i = 1, 2, . . . , M (40)

Since

∑M
i=1

ci = cMEs (41)

Fig. 11 Comparison of CAET algorithms for sequences Akiyo, Foreman and Stefan

Cfc in the figure means complexity constraint CFC
IET Image Process., 2012, Vol. 6, Iss. 1, pp. 60–71 69
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the complexity of an MB can be expressed as

cj =
b

(1/2)
j

S
M
i=1b

(1/2)
i

cMEs, j = 1, 2, . . . , M (42)

Equation (42) is our optimal algorithm of CAMB for ME.
However, obtaining bi takes much complexity overhead,
which is not good for real-time video encoding. Let COST
0i denotes the R–D cost of ith MB with zero motion
vector. According to our extensive research shown in
Fig. 10, bi can be approximated in terms of COST 0i for
most frames in most video sequences as

bi ≃ B × (COST 0i)
2 (43)

where B is a constant. Even though (43) is not exactly
accurate for a few frames in Akiyo, it is still acceptable
because bi is still roughly proportional to COST 02 for
MBs in these frames. Experimental results shown in
Section 7 reveal that (43) is still a good approximation for
these frames. Therefore (42) can be derived to

cj =
COST 0j

S
M
i=1COST 0i

cMEs, j = 1, 2, . . . , M (44)

COST 0i can be obtained simply by comparing the current
MB to the co-located MB in the previous frame which
can be performed before encoding the first MB in the
current frame and the result can be saved for ME.
Therefore (44) consumes very little overhead and is a very
practical algorithm.

After all inter-prediction modes have been done,
Intra_4 × 4 prediction can be performed if the consumed
complexity is less than the budget. An H.264 video
encoder provides nine modes for Intra_4 × 4 prediction.
After each prediction mode is performed, the consumed
complexity is checked to determine whether to perform the
next mode.

6 Complexity-aware video encoding process

The video encoding with the proposed complexity control
method operates as follows:

† Step 1. Determine the complexity of each essential tool:
The complexity of each essential tool cMCs, cINTRAs,
cDF and cINTP are measured by offline test. The values of
C1, C2 and C3, the number of CFPS a half-pel search
consumes and that a quarter-pel search consumes are also
measured by offline test. The subtotal complexity for ME,
PRECODING and entropy coding for all MBs, CFC, is
obtained according to (3).
† Step 2. Determine the model parameters: Before encoding
each frame, the ME model constants a and b in (21) are
estimated from the statistics of previous frames using linear
regression [24]. The R–D model constant g is also
determined from the statistics of previous frames.
† Step 3. Determine the complexity for ME, PRECODING
and entropy coding for all MBs: Before encoding each
frame, the ME complexity for all MBs and the number of
MBs to be encoded by PRECODING, l, are determined
using our CAET algorithm. The complexity of entropy
coding is allocated using (6).
70
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† Step 4. Determine the ME complexity and PRECODING
complexity for each MB: Before encoding the first MB in
each frame, COST 0 of each MB is obtained. The ME
complexity budget of each MB is allocated using (44).
The l MBs, whose co-located MBs in the previous frame
have larger residual signals, are selected for
PRECODING. Using rate control, a proper QP is
determined for the target rate. Once the bit rate for this
frame is controlled, the entropy coding complexity is also
controlled.
† Step 5. Complexity control: During ME for each MB, the
total complexity consumption after each search should be
computed. If the total complexity consumption is less than
the budget, ME proceeds. Otherwise, ME stops. After ME
process, Intra_4 × 4 prediction is executed if the total
complexity consumption is less than the budget.
Intra_16 × 16 prediction should be executed because its
complexity is reserved at Step 2.

7 Experimental results

7.1 Comparison between the proposed
and existing CAET algorithms

Let ‘opi’ denotes the optimal algorithm proposed by this
research and ‘oph’ denotes the optimal algorithm proposed
by He’s work [6]. Let ‘pft’ denotes the simple algorithm
that allocates the complexity to PRECODING and entropy
coding first. If there is more complexity available, then it is
allocated to ME. All the three algorithms are accompanied
with the method of CAMB for ME proposed in Section 5,
because it yields the best performance as Section 7.2 will
present. The experimental environment is shown in
Table 1. According to the experimental results, the
computation overhead of ‘oph’ takes 1/40 s per frame. The
computation overhead of ‘opi’ takes only 1/330 s per
frame. With the computation overhead being ignored, the
experimental results in Fig. 11 reveal the optimal
algorithm proposed by this research is superior to other
existing algorithms.

7.2 Comparison between CAMB algorithms for ME

Let ‘ome’ denotes our optimal algorithm of CAMB for ME
presented by (44) and ‘mhm’ denotes the MHM-based
method [6]. This experiment compares these two complexity
allocation methods with the options shown in Table 3. As
experimental results in Fig. 12 show, ‘ome’ yields better
R–D performance than ‘mhm’, especially when the
complexity constraint is strict. The peak signal-to-noise ratio
improvement measured at the same rate can be as high as
1 dB for Akiyo sequence and 0.5 dB for Foreman and Stefan
sequences.

Table 3 Options for complexity allocation for ME

Sequences Foreman, Stefan, Akiyo QCIF

CMEs 20∗M, 40∗M, 60∗M

complexity

unit

CFPS

fast ME Diamond

QP 27,29,31,33,35 for Foreman and Stefan

25,27,29,31,33 for Akiyo
IET Image Process., 2012, Vol. 6, Iss. 1, pp. 60–71
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8 Conclusion

This work proposes a concise and accurate C–R–D model
for real-time video encoding. Based on this model, we

Fig. 12 Comparisons of the algorithms of CAMB for ME for
sequences Akiyo, Foreman and Stefan
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propose an optimal algorithm of CAET which yields
better performance than the existing algorithms do with
much less complexity overhead. We also propose an
optimal algorithm of CAMB for ME which significantly
increases the encoder performance under the complexity
constraint.
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