
H.-C. Chung et al.: Low Power Architecture Design and Hardware Implementations of Deblocking Filter in H.264/AVC 713

Contributed Paper
Manuscript received 02/24/11
Current version published 06/27/11
Electronic version published 06/27/11. 0098 3063/11/$20.00 © 2011 IEEE

Low Power Architecture Design and Hardware Implementations
of Deblocking Filter in H.264/AVC

Hua-Chang Chung, Zong-Yi Chen, and Pao-Chi Chang, Member, IEEE

Abstract — An adaptive in-loop deblocking filter (DF) is

standardized in H.264/AVC to reduce blocking artifacts and
improve compression efficiency. This paper proposes a low
power DF architecture with hybrid and intelligent edge skip
filtering order. We further adopt a four-stage pipeline to boost
the speed of DF process and the proposed Horizontal Edge
Skip Processing Architecture (HESPA) offers an edge skip
aware mechanism for filtering the horizontal edges that not
only reduces power consumption but also reduces the filtering
processes down to 100 clock cycles per macroblock (MB). In
addition, the architecture utilizes the buffers efficiently to
store the temporary data without affecting the standard-
defined data dependency by a reasonable strategy of edge
filtering order to enhance the reusability of the intermediate
data. The system throughput can then be improved and the
power consumption can also be reduced. Simulation results
show that more than 34% of logic power measured in FPGA
can be saved when the proposed HESPA is enabled.
Furthermore, the proposed architecture is implemented on a
0.18μm standard cell library, which consumes 19.8K gates at
a clock frequency of 200 MHz, which compares competitively
with other state-of-the-art works in terms of hardware cost1.

Index Terms — Deblocking Filter, H.264/AVC, Low Power
Design, FPGA, Hardware Implementation.

I. INTRODUCTION

Digital video technology now plays an important role in
multimedia communications. The transmission of video data
requires low power, fast speed, high performance, and low
cost, especially in networks with limited bandwidth.
H.264/AVC is the advanced video coding standard jointly
developed by the Video Coding Experts Group (VCEG) of
ITU-T as Recommendation H.264 and by the Moving Picture
Experts Group (MPEG) of ISO/IEC as International Standard
14496-10 (MPEG-4 part 10) Advanced Video Coding (AVC)
[1]. Figure 1 shows the functional blocks of an H.264/AVC
encoder. Among these outstanding coding tools, the
deblocking filter (DF) located inside the motion-compensated
prediction path realized at both encoder and decoder sides of
H.264/AVC, is one important tool to further increase coding
efficiency and improve both objective and subjective video

1 H. C. Chang is with the STEC, Inc. (SimpleTech, Inc.), Hsinchu, Taiwan

(e-mail: xx009254@gogo.net.tw).
Z. Y. Chen and P. C. Chang are with the Department of Communication

Engineering, National Central University, Jhongli, Taiwan (e-mail:
zychen@vaplab.ce.ncu.edu.tw, pcchang@ce.ncu.edu.tw).

Fig. 1. Block diagram of an H.264/AVC encoder.

quality. The block-based coding structure of H.264/AVC
produces artifacts known as blocking artifacts which are the
unwanted discontinuities on each block boundary caused by
both the quantization errors of the transform coefficients and
compensation. A DF can improve the coding performance by
reducing the bit rate by more than 9% while maintaining the
same objective quality as the non-filtered video and achieving
a subjective quality improvement [2].

The DF algorithm in H.264/AVC is highly adaptive and
complex and being based on the conditions of block edges
requires a large amount of computing resources. In fact, DF
always contributes to approximately one third of the total
computational complexity of an H.264 decoder [2], [4], and is
the bottleneck of the entire H.264/AVC decoder. Each block
edge needs to be conditionally processed according to the edge
feature and pixel gradient along the edge. Almost every sample
of a reconstructed frame needs to be reloaded from memory,
either to be modified or used in determining whether
intermediate samples should be updated; this demands a very
large memory bandwidth. For that reason, DF always consumes
significant time and energy during filtering. Therefore, an
efficient DF hardware design with moderate memory access is
required for real time processing of an H.264/AVC decoder or
low-power applications, because battery operating time is the
key to commercial success [3]. We focus on the issue of low
power by proposing a cost efficient and power saving hardware
architecture design of a DF in H.264/AVC.

The remainder of the paper is organized in the following
manner. Section II describes the DF algorithm used in
H.264/AVC. The proposed architecture for DF is discussed in
Section III. The implementation results and comparisons with
other architectures are presented in Section IV. Finally, brief
concluding remarks are included in Section V.

714 IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, May 2011

II. DEBLOCKING FILTER ALGORITHM

This section reviews the deblocking filter algorithm
employed in H.264/AVC.

A. Deblocking Filter Order

The DF uses one 4x4 block as a basic unit to process a
macroblock (MB). The filtering order is to first filter along the
four vertical edges from left to right and then to repeat along
the horizontal edges from top to bottom while excluding the
edges on the boundary of a frame. As shown in Fig. 2, the
order of filtering is first from A, B, C, D, E, F, G, H first in
Luma and then I, J, K, L in Cb, and finally M, N, O, P in Cr.
After filtering is applied, pixels drawn in yellow may be
modified on either side of a vertical or horizontal boundary in
adjacent blocks, depending on the boundary strength (BS) and
on the gradient of image samples across the adjacent edges.
BS is an integer ranged form 0 to 4 that could be regarded as
the filtering strength for updating samples. For Luma samples,
if BS = 0, no filtering operation is required. If BS = 1-3, a
normal filtering operation is applied to samples p0, p1, q0,
and q1. If BS = 4, a stronger filtering is applied to samples p0,
p1, p2, q0, q1, and q2. The BS is used to determine the
appropriate strength of the filter applied to the edge.

Fig. 2. Order of filtering for Luma and Chroma in one macroblock.

B. Deblocking Filter Algorithm

A group of samples from the set (p2, p1, p0, q0, q1, q2) in
Fig. 2 may be filtered only if (1) is satisfied.

BS 0

p0 q0

p1 p0

q1 q0

 (1)

If any condition in (1) is false, the filtering will not be
applied. The purpose of the filtering threshold criteria is to
disable the filtering operations and preserve the true edge
when there is a relatively large absolute difference between
samples across the block boundary in the original image. The
thresholds and increase with the average of the

quantization parameters (QP) of two adjacent blocks. When
QP is small, a small gradient across the boundary is likely to
exist due to the features of the image (not blocking effects but
real edges), and such edges should be preserved by setting
and to be low. When QP is larger, blocking distortion is

likely to be more significant, and , are set higher so that

stronger filtering can be applied.
In H.264/AVC, the DF can be divided into two filtering

process modes. One is the normal mode when BS = 1, 2, or 3,
and the other is the stronger mode when BS = 4. Figure 3
summarizes and illustrates the DF algorithm for luminance
samples. For chrominance edge filtering, only p0 and q0 are
modified. They are filtered in the same manner as luminance.
Figure 3 classifies twelve different processing cases. In Case 0,
no filtering operation is applied to the samples. Cases 1-4
(drawn in blue as a group) are conditions for normal filtering
modes, and Cases 5-11 (drawn in red as a group) are
conditions for stronger filtering modes. In brief, the DF
adaptively filters the adjacent samples on a 4x4 block edge for
both of luminance and chrominance based on the threshold
conditions (,), the threshold clipping variables (c0, c1),

BS, QP, and the input pixel values. The implementation of DF
hardware may include table look-up, pixel comparison, pixel
filtering with addition, shift, pixel clipping in case of overflow
and output to memories or display buffers.

Fig. 3. H.264 deblocking filter algorithm for Luma samples. Where P2, P1,
P0, Q0, Q1, and Q2 are pixel values after filtering is applied.

III. PROPOSED ARCHITECTURE

A. Block Diagram of the Proposed DF Architecture

Figure 4 shows the block diagram of the proposed DF
architecture where the solid line drawn in red is the sample
data path, while the solid line in black indicates the control
path and the dotted line is the input parameters feeding to DF
Engine. A 4-stage pipeline filter inside the DF engine
manages pipeline control, calculations of the threshold values,
clipping functions, pixel filtering, and several conditions on
each block edge based on DF algorithm. The required internal

H.-C. Chung et al.: Low Power Architecture Design and Hardware Implementations of Deblocking Filter in H.264/AVC 715

memory resources including left and upper neighbor SRAMs,
transposition buffers, and left neighbor buffer are used to store
pixels on the top and left boundary of MB or intermediate
filtered pixels. The DF selects input data produced by these
memory blocks obeying the pixel data dependency according
to the MB and the order of edge filtering. The horizontal edge
skip block, which is implemented by the proposed horizontal
edge skip processing architecture (HESPA) mechanism
intelligently skips the unnecessary filtering on the horizontal
edges. The test bench including some required filtering
parameters such as boundary strength, un-filtered pixels, QPC,
QPY, alpha offset, beta offset, and external pseudo memory
used for storing final data is designed for verifying the
correctness of the proposed DF Engine across the simulator.

Fig. 4. Block diagram of the proposed DF architecture.

B. Proposed Pipeline Strategy and Order of Edge Filtering

DF requires a very large memory capacity to store
temporary data in the filtering process, so the order of edge
filtering affects the throughput significantly [7]. The order of
standardized filtering for DF is from left to right and then
from top to bottom sequentially on an MB as in Fig. 5 (a). In
[7], Ke Xu et al. evaluated the control hazards, structure
hazards, and data hazards in their pipeline architecture. In this
DF design, we proposed a 4-stage pipeline filtering
architecture for 1-D edge filtering. For edge filtering, several
steps need to be judged or computed. These include the
condition to be decided on each block, the calculations of the
threshold values including alpha, beta, and the clipping
functions, content activity check, and normal or stronger
filtering.

The goal of a pipeline design is to balance the length of
each pipeline stage. If the stages are perfectly balanced, the
speedup from pipelining equals the number of pipeline stages.
Therefore, the goal is to perform edge filtering on an MB with
fluent pipeline stages and without stall cycles. Each filtered
output needs 4 clock cycles to complete filtering. Thus, the
total number of cycles for filtering an MB with 48 edges plus
4 cycles for initially loading the un-filtered pixels is 4 x 48 + 4
= 196 cycles. To boost the speed of the DF process, the order
of filtering is rearranged in a hybrid pattern to facilitate the
deblocking of the pixels in a 4-stage pipeline fashion.

(a) Sequential filtering order.

(b) Adopted hybrid filtering order.

Fig. 5. Sequential and hybrid order of filtering. The numbers inside the
circles and squares denote the filtering order.

We tried many ordering schemes in the simulation to deal

with the hazard issues and finally obtained the optimal hybrid
order as shown in Fig. 5 (b). Although the hybrid edge order
of filtering is not identical to the sequential order specified in
the H.264/AVC standard, the adopted order still obeys the
same rule of filtering the left edge first and the bottom edge
last for each 4x4 block and hence does not affect the data
dependency.

Coincidentally, the adopted filtering order is the same as
that proposed by [7]. The advantage of this adopted order is to
use as few as 4 transposition buffers to temporarily store
filtered pixels. The transposition buffer is a 4x4 array to store
16 pixels. It can be activated throughout both luma and
chroma MBs by obeying the adopted filtering order meaning
that the data reuse is at the unit of 4x4 basic blocks. For
instance, filtering of edge6 may reuse filtered pixels of edge1.
Once filtering of edge8 is completed, the transposition buffer
can be switched to the next 4x4 basic block for storing the
filtered pixels of edge10. For the traditional filtering order
standardized in H.264/AVC shown in Fig. 5 (a), it does not
reuse data well and requires more memory or transposition
buffers to store filtered pixels. For the order of edge filtering 1,
6, 10, 3, 7, 11, 17, 22, 26, 19, 23, 27, 33, 35, 41, and 43 of the
different 4x4 blocks, we need transposition buffers to
transpose data from the row to column to intermediately store
pixels for the vertical filtering on horizontal edges. Because
transposition buffers require at least 4 clock cycles to write the
filtered pixels back to the current 4x4 block in our 4-stage
pipeline, this filtering strategy does not proceed immediately
with vertical filtering followed by horizontal filtering due to
the delay of transposition buffer. By observing the filtering
order carefully, we can observe that on some 4x4 blocks, the

716 IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, May 2011

transposition buffers encounter long waiting times from edge
order 5 to 20, 9 to 24, 14 to 28, and 15 to 29 to serve edge20,
24, 28, and 29, respectively. Therefore, we adopt upper
neighbor SRAM to reuse the data in the design for storing the
filtered results of B0, B1, B2, and B3 to be later used for edge
order 20, 24, 28, and 29 as depicted in Fig. 6. Compared to Ke
Xu et al. [7], we save transposition buffers for storing the
upper MBs.

Fig. 6. Blocks to be stored in the upper neighbor SRAM.

C. Proposed Horizontal Edge Skip Processing Architecture

In H.264/AVC DF, filtering on some pixels can be skipped
when pixel differences and threshold values satisfy some
specific conditions. By exploiting this feature, we propose an
intelligent filtering scheme, horizontal edge skip processing
architecture (HESPA), to skip the unnecessary filtering on the
horizontal edges. The proposed HESPA is applied to the
horizontal edges with BS = 0 or the edges on the top boundary
of a frame to deactivate DF execution. In this way, the
processing cycles of filtering can be saved and the power
consumption can also be reduced.

HESPA applies to both luma and chroma MB edges. There
are 48 edges to be filtered in an MB, and half of them, 24
edges, could possibly be skipped if the HESPA is enabled. To
realize HESPA, functional blocks including left neighbor
buffer, finite state machine (FSM) for left neighbor SRAM
read/write (R/W), and some other control logic are
implemented as shown in Fig. 7.

Fig. 7. Proposed FSM for HESPA architecture.

Because the adaptive or skipped filtering steps make the left
neighbor SRAM not accessed in sequential order, we need
FSM and left RAM address and read/write generator to serve
left neighbor SRAM adequately. Though HESPA increases
some gate counts and has a small control complexity, it only
consumes 10% of the total gate counts. Section IV.-B shows

the results of the synthesis, which saves filtering cycles and
power consumption with few cost penalties.

D. Memory Allocation and Transposition Buffer Usage

In our DF architecture for storing temporary data during the
filtering process, three types of internal memory resources are
required. They are left neighbor SRAM, which stores the
filtered pixels on the left boundary MB edge, upper neighbor
SRAM, which provides the necessary pixels to the upper
boundary of the current MB and transposition buffers, which
each operates on the unit array of a 4x4 block of the current
MB to store intermediate pixels. For a QCIF video with 4:2:0
format, the size of left neighbor SRAM is fixed at 32x32 bits
(including 16x32 bits for luma and 16x32 bits for chroma), the
size of upper neighbor SRAM is 352x32 bits (including
176x32 bits for luma and 176x32 bits for chroma), and the
size of transposition buffers is 640 bits (here we count the left
neighbor buffer used in HESPA as one transposition buffer).

In this design, left and upper neighbor SRAMs are
implemented with two-port SRAM and the data bus is 32-bit
wide to access 4 samples each time. Unlike the work in [8], we
do not combine the two separate neighbor SRAMs into a single
SRAM block and hence our approach offers the flexibility to
manage pixels allocation in SRAM properly without data
conflicts. The separate SRAM facilitates the correct
arrangement of temporary data for our proposed HESPA
mechanism. In HESPA, because filtering steps are skipped in
the filtering process, the data flow should be managed carefully
in terms of memory allocation. Otherwise, the samples are not
stored for the correct space and time leading to incorrect
filtering. Transposition buffers are implemented with flip flops
in this design. Each transposition buffer consists of 16 samples
(4x4) with a total of 128 bits or 16 bytes, which either
transposes the pixels from the row to column or stores filtered
data temporarily where the read/write process is accessed by
memory control logic. The architecture is shown in Fig. 8.

Fig. 8. Transposition buffer architecture.

The proposed order of edge filtering, together with the
proposed memory organization and memory update
mechanism are helpful in reducing the required memory
bandwidth and maximizing the 4-stage pipeline throughput,
making the filtering processes much more efficient.

H.-C. Chung et al.: Low Power Architecture Design and Hardware Implementations of Deblocking Filter in H.264/AVC 717

IV. EXPERIMENTAL RESULTS AND PERFORMANCE

EVALUATION

A. Statistics of Boundary Strength

DF uses BS to determine the appropriate strength of the
filter applied to the edge. We test three QCIF video sequences
with 100 frames (Foreman, Mobile, and Stefan) for the
encoding type IPPP…. The statistics of luma blocks for each
BS and the percentage of BS = 0 on horizontal edges for
different sequences are listed in TABLE I. We can see that BS
= 0 occupies the highest proportion of distributions. Moreover,
from TABLE I we can observe that BS = 0 distributes
uniformly on both horizontal and vertical edges. Almost half
of zero BS takes place on horizontal edges. Therefore, the
percentages of filtering cycles saved for zero BS on the
horizontal edges are 36.2%, 32.1%, and 30.6% for Forman,
Mobile, and Stefan video sequences respectively.

TABLE I
BS = 0 ON HORIZONTAL EDGE FOR DIFFERENT VIDEO SEQUENCES

These observations support the proposal of the edge skip

aware mechanism on horizontal edge filtering. The
opportunities for skipping edge filtering are relatively frequent.
The number of cycles for filtering an MB could be reduced
from 196 down to 100 clock cycles per MB in the best case,
considerably saving power consumption.

B. Synthesis Results

The proposed DF hardware architecture is implemented in
Verilog RTL codes. They are verified with RTL simulations
and the results are matched with the JM reference software,
for the same rate-distortion performance. The proposed
architecture is synthesized using a Design Compiler with a
0.18μm standard cell library. The results show that the
hardware implementation consumes 19.8K gates when
running at 200 MHz, where the memory elements (SRAM for
neighbor and left MBs) are excluded. From the synthesis
results in TABLE II, we can see that more than half of the
resources (50.22%) are spent on transposition buffer, left
neighbor buffer and display buffer. This is the reason we do
not adopt the 2-D filtering architecture as proposed in [8]-[11].
Otherwise, a higher number of gates and larger layout areas
are required in the DF hardware implementations. The 4-stage
pipeline filter engine uses only approximately one-third
(30.09%) of the total DF areas. To implement the HESPA
intelligent mechanism, we require an additional 2.1K gates to
realize the architecture. The additional resources for HESPA
include the left neighbor buffer, the finite state machine for
the left neighbor SRAM R/W access, and some other logic
controls for edge counter awareness.

TABLE II
SYNTHESIS RESULTS FOR PROPOSED MODULES

Module Gate Counts Main Function %

DBF_pipeline 5970.122 4-stage pipeline filtering function 30.09

DBF_reg_ctrl 9963.548
Transposition Buffer, Left Neighbor

Buffer and Display Buffer
50.22

DBF_mem_ctrl 3907.743
Memory Control for pixel Read/Write

and order filtering counters
19.69

Total 19841.413 100

C. Power Analysis

The Verilog code is then synthesized to a FPGA. The
resulting net-list is placed and routed to field-programmable
gate arrays. The power consumptions of the DF hardware
implementations on FPGA are estimated by a power
estimation tool [15]. To estimate real power consumption of
the DF architecture in activity or in operation, a timing
simulation of that DF hardware implementation is first done in
the test bench and the signal activities are stored in VCD files.
Afterwards, these VCD files are used to estimate the power
consumption of our design. Typically the power consumptions
of the DF hardware implementation are divided into three
main categories: signal power, logic power, and clock power.
To evaluate the power consumption of the DF design, we
compare with [14] because both have the same experimental
conditions (Clock rate at 50 MHz and both use block
SelectRAMs for internal memory). TABLE III compares the
power estimation of our design with [14], which has two
different hardware architectures (DBF_16x16 and DBF_4x4).

TABLE III
POWER CONSUMPTION ESTIMATION COMPARISONS WITH [14]

Category [14] DBF_4x4 [14] DBF_16x16 Proposed Reduction

Clock 56.37 mW 50.36 mW 46.63 mW 3.73 mW

Logic 145.65 mW 52.47 mW 13.90 mW 38.57 mW

Signal 83.56 mW 79.39 mW 42.04 mW 37.35 mW

Total 285.58 mW 182.22 mW 102.57 mW 79.65 mW

As shown in TABLE III, we can observe that the proposed

DF hardware consumes less power than [14] in all categories.
Moreover, the proposed hardware has a 38.57mW power
reduction in logic compared with the DBF_16x16 hardware
[14], which is the greatest reduction among the three
categories. This is because fewer computation cycles are used
in the proposed hardware. The differences in internal memory
resources and hardware performance comparisons between the
proposed DF architecture and [14] are listed in TABLE IV
and TABLE V respectively. From TABLE IV we see that [14]
utilized left neighbor memory instead of buffers to store
intermediate data. This causes more power consumption when
utilizing on-chip SRAM instead of using the buffers [13].
Also, from TABLE V, 5248 or 5376 processing cycles is
required to filter an MB in [14]. In this scheme, only 100-196
cycles/MB is required. A possible reason is that [14] adopted
an 8-bit data bus to access each pixel while our design utilized
a 32-bit wide data bus to access 4 pixels each time.

 Foreman Mobile Stefan
Total BS Counts 316800 316800 316800

BS = 0 228373 202745 194781
BS = 0 on Horizontal edge 114651 101657 96969

Cycles Saving 36.2% 32.1% 30.6%

718 IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, May 2011

TABLE IV

INTERNAL MEMORY COMPARISONS WITH [14]

TABLE V

HARDWARE PERFORMANCE COMPARISONS WITH [14]
HW Comparison [14] Proposed

Gate Counts (without internal buffers) 5.3K 9.9K

Technology 0.18μ 0.18μ
Processing cycles/MB 5248/5376 100-196

D. Power Analysis of HESPA

We now evaluate the power saving for the proposed
HESPA approach. Table VI lists three categories of power
estimation and compares the power reduction between
HESPA in the on state and HESPA in the off state. The
proposed HESPA can save up to one-third (34%) of total
power consumption in logic and signal processing and thus
can speed up DF processing significantly. This result matches
with Section IV.-A, which describes that BS = 0 on horizontal
edges is about one-third of total BS counts. Therefore, roughly
one-third of the total number of processing cycles can be
saved when the BS is zero on horizontal edges or the edges
are on the top boundary. The number of cycles saved
corresponds to power saving in the simulation because we use
enable bit to stop DF clock or to halt DF processing when
filtering is completed. However, no reduction in clock power

consumption because clock power is due to the clock tree used
in the FPGA. The topology of the clock tree is fixed once
FPGA completes placings and routings. Since we do not
change clock rate during the simulations, the power
consumption on the clock tree is therefore fixed.

TABLE VI
POWER COMPARISONS BETWEEN HESPA ON/OFF

Sequence
Category

100 frames of Forman QCIF

 HESPA OFF HESPA ON Reduction

Clock 46.63 mW 46.63 mW 0

Logic 21.10 mW 13.90 mW 34.12%

Signal 63.80 mW 42.04 mW 34.11%

Whole FPGA 624.36 mW 579.08 mW 7.25%

E. Performance Comparisons

This section compares our DF hardware performance with
various state-of-the-art designs. As shown in TABLE VII, the
design requires fewer transposition buffers and fewer gate
counts than [7], which used a similar design approach to this
one (pipeline stage and 1-D filtering architecture). Although
this design requires more processing cycles than in Tobajas et
al. [8], we can lower the gate count and achieve lower
transposition buffer usage. That is because in [8], a double
filter with two identical filtering units was proposed as
opposed to our 1-D filtering strategy. Moreover, the proposed
HESPA, an intelligent edge skip processing approach, can
achieve as few as 100 cycles per MB in the best case, which
even outperforms the 2-D architecture in [8] (110 cycles). The
design consumes 19.8K gates at a clock frequency of 200
MHz in a 0.18μm standard cell library. The hardware cost of
the proposed scheme is very competitive compared with other
state-of-the-art literatures using 1-D filtering architecture.

TABLE VII
COMPARISONS WITH STATE-OF-THE-ART LITERATURES

Reference Filter Pipeline 1-D / 2-D Processing Order RAM type RAM size
Transposition
Buffer (4x4)

Tech
Gate

Count
Processing

cycles per MB

[4] non-pipeline 1-D sequential basic two-port 2x80x32 4 0.25um 20.66k 614

[5] 4-stage pipeline 1-D sequential basic two-port 32x32 2 0.13um 7.5k(*) 192

[6] 5-stage pipeline 1-D hybrid two-port
32x32 /
32x32

1 0.18um 18.7k 210 or 222

[7] 5-stage pipeline 1-D hybrid single-port
2x96x32 /

2Nx32
7 0.18um 21.492k 204

[8] 5-stage pipeline 2-D hybrid single-port 64x32 8 0.18um 12.6k(*) 110

[12] non-pipeline 1-D sequential improved two-port 1x160x32 2 0.25um 18.77k 646

[14] non-pipeline 1-D hybrid two-port 1792x8 none FPGA 5.3k(*) 5248/5376

[16] non-pipeline 1-D hybrid two-port
1x64x32 /
2x96x32

none 0.25um 24k 446

[17] non-pipeline 1-D hybrid two-port 16x32 2 0.25um 13.41k 300

[18] non-pipeline 1-D hybrid single-port 1x160x32 4 0.18um 19.64k 250

[19] non-pipeline 1-D hybrid two-port 32x16 2 NA NA 232

Proposed 4-stage pipeline 1-D hybrid two-port 384x32 5 0.18um
19.8k /
9.9k(*)

100~196

NOTE: (*) GATE COUNT ESTIMATIONS EXCLUDING ITS TRANSPOSITION BUFFER AND MEMORY

Memory Required [14] (bits) Proposed (bits)

Left Neighboring Memory 384x8=3072 32x32=1024

Upper Neighboring Memory
(for QCIF)

1408x8=11264 352x32=11264

Transposition Buffers and Left
Neighbor Buffer

0 5x128=640

H.-C. Chung et al.: Low Power Architecture Design and Hardware Implementations of Deblocking Filter in H.264/AVC 719

V. CONCLUSION

A deblocking filter within the motion compensation loop is
used to reduce the artifacts and enhance subjective views. This
work adopts a reasonable strategy of edge filtering order to
enhance the reusability of intermediate data, and utilizes as
few as five transposition buffers for storing temporary data
without affecting the standard-defined data dependency. We
employ 4-stage pipeline filtering to boost the speed of the
deblocking filter. The proposed HESPA mechanism skips
unnecessary filtering on the horizontal edges so that the total
number of filtering edges for one MB ranges adaptively from
24 to 48. Finally, we implement finite state machine to
properly arrange memory R/W pixels on left neighbor SRAM
to realize the proposed HESPA method. The hardware of our
deblocking filter architecture can adaptively achieve 100~196
cycles per MB throughput for H.264/AVC real time decoding.
The architecture is designed in Verilog and implemented by
0.18μm CMOS technology. The gate count is only 19.8K
when synthesized at 200 MHz, excluding the memory cost.
The system throughput can easily support 1080HD video
format at 30 fps with 70MHz clock frequency for low power
and high definition video applications.

REFERENCES
[1] ISO/IEC ITU-T Rec. H264: Advanced Video Coding for Generic

Audiovisual Services, Joint Video Team (JVT) of ISO-IEC MPEG &
ITU-T VCEG, Int. Standard, May 2003.

[2] P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz,
“Adaptive deblcoking filter,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 13, no.7, pp. 614-619, July 2003.

[3] J. Rabaey, “Low-Power Silicon Architectures for Wireless
Communication,” Asia and South Pacific Design Automation
Conference, 2000, pp.379-380.

[4] Y. W. Huang, T. W. Chen, B. Y. Hsieh, T. C. Wang, T. H. Chang, and L.
G. Chen, “Architecture design for deblocking filter in
H.264/JVT/AVC,” in Proc. IEEE Int. Conf. Multimedia Expo., July
2003, vol. 1, pp.693-696.

[5] G. Khurana, A. A. Kassim, T. P. Chua, and M. B. Mi, “A pipelined
hardware implementation of in-loop deblocking filter in H.264/AVC,”
IEEE Trans. Consum. Electron., vol. 52, no. 2, pp. 536-540, May 2006.

[6] Q. Chen, W. Zheng, J. Fang, K. Luo, B. Shi, M. Zhang, and X. Zhang,
“A pipelined hardware architecture of deblocking filter in H.264/AVC,”
Third International Conference on Communications and Networking in
China, China Com 2008, pp. 815 -819.

[7] K. Xu and C. S. Choy, “A Five-Stage Pipeline, 204 Cycles/MB, Single-
Port SRAM Based Deblocking Filter for H.264/AVC,” IEEE Trans.
Circuits Syst. Video Tech., vol. 18, no. 3, pp.363-374, Mar. 2008.

[8] F. Tobajas, G. M. Callico, P.A. Perez, V. de Armas, and R. Sarmiento,
“An Efficient Double-Filter Hardware Architecture for H.264/AVC
Deblocking Filtering,” IEEE Trans. Consum. Electron., vol. 54, no. 1,
Feb. 2008.

[9] Y. C. Lin and Y. L. Lin, “A Two-Result-per-Cycle Deblocking Filter
Architecture for QFHD H.264/AVC Decoder,” IEEE Trans. VLSI Syst.,
vol. 17, no. 6, June 2009.

[10] H. Loukil, A. B. Atitallah, and N. Masmoudi, “Hardware architecture for
H.264/AVC deblocking filter algorithm,” 6th International Multi-
Conference on Systems, Signals and Devices, 2009, pp. 1-6.

[11] T. H. Tsai and Y. N. Pan, “High efficient H.264/AVC deblocking filter
architecture for real-time QFHD,” IEEE Trans. Consum. Electron., vol.
55, no. 4, pp. 2248-2256, Nov. 2009.

[12] S. Y. Shih, C. R. Chang, and Y. L. Lin, “An AMBA-compliant
deblocking filter IP for H.264/AVC,” in Proc. IEEE International
Symposium on Circuits and Systems, May 2005, vol. 5, pp. 4529-4532.

[13] N. T. Ta, J. Youn, H. Kim, J. Choi, and S. Han, “Low-power high-
throughput deblocking filter architecture for H.264/AVC,” International
Conference on Electronic Computer Technology, 2009.

[14] M. Parlak and I. Hamzaoglu, “Low power H.264 deblocking filter
hardware implementations,” IEEE Trans. Consum. Electron., vol. 54, no.
2, pp. 808-816, May 2008.

[15] Xilinx Inc., “XPower Tutorial: FPGA Design,” XPower (v1.3), July 15,
2002, 1-800-255-7778.

[16] B. Sheng, W. Gao, and D. Yu, “An implemented architecture of
deblocking filter for H.264/AVC,” in Proc. Int. Conf. Image Process.,
Oct. 2004, vol. 1, pp. 24-27.

[17] C. C. Cheng, T. S. Chang, and K. B. Lee, “An in-place architecture for
the deblocking filter in H.264/AVC,” IEEE Trans. Circuits Syst. II, vol.
53, no. 7, pp. 530-534, Jul. 2006.

[18] T. M. Liu, W. P. Lee, T. A. Lin, and C. Y. Lee, “A memory-efficient
deblocking filter for H.264/AVC video coding,” in Proc. IEEE
International Symposium on Circuits and Systems, May 2005, vol. 3, pp.
2140-2143.

[19] K. Y. Min and J. W. Chong, “A memory and performance optimized
architecture of deblocking filter in H.264/AVC,” in Proc. Int. Conf.
Multimedia Ubiquitous Eng., Apr. 2007, pp. 220-225.

BIOGRAPHIES

Hua-Chang Chung received the B.S. degree in Physics
and the M.S. degree in communication engineering from
the National Central University, Taiwan, ROC in 1997
and 2010, respectively. He is currently working for STEC,
Hsinchu, Taiwan. His research interests include
multimedia coding, high speed transmissions and VLSI
hardware design.

Zong-Yi Chen received the B.S. degree in electrical
engineering and the M.S. degree in communication
engineering from the National Central University, Taiwan,
in 2005 and 2007, respectively. He is currently pursuing
the Ph. D. degree at the Video-Audio Processing
Laboratory in communication engineering, National
Central University, Taiwan. His research interests include

image/video processing, video compression, multimedia signal processing and
communications, and scalable video coding.

Pao-Chi Chang received the B.S. and M.S. degrees from
National Chiao Tung University, Taiwan, in 1977 and
1979, respectively, and the Ph. D. degree from Stanford
University, California, 1986, all in electrical engineering.
From 1986 to 1993, he was a research staff member of the
department of communications at IBM T. J. Watson
Research Center, Hawthorne, New York. At Watson, his

work centered on high speed switching systems, efficient network design
algorithms, and multimedia conferencing. In 1993, he joined the faculty of
National Central University, Taiwan, where he is presently a Professor in the
Department of Communication Engineering. In 1994, Dr. Chang established
and has headed the Video-Audio Processing Laboratory (VAPLab) in the
Electrical Engineering Department and Communication Department of
National Central University since. Dr. Chang is the principle investigator for
many joint projects with National Science Council (NSC), Institute of
Information Industry (III), Chung Hwa Telecommunication Laboratories (TL),
and many other companies. His research interests include speech/audio
coding, video/image compression, scalable coding, error resilient coding,
digital watermarking and data hiding, and multimedia delivery over packet
and wireless networks.

