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Abstract — An adaptive in-loop deblocking filter (DF) is 

standardized in H.264/AVC to reduce blocking artifacts and 
improve compression efficiency. This paper proposes a low 
power DF architecture with hybrid and intelligent edge skip 
filtering order. We further adopt a four-stage pipeline to boost 
the speed of DF process and the proposed Horizontal Edge 
Skip Processing Architecture (HESPA) offers an edge skip 
aware mechanism for filtering the horizontal edges that not 
only reduces power consumption but also reduces the filtering 
processes down to 100 clock cycles per macroblock (MB). In 
addition, the architecture utilizes the buffers efficiently to 
store the temporary data without affecting the standard-
defined data dependency by a reasonable strategy of edge 
filtering order to enhance the reusability of the intermediate 
data. The system throughput can then be improved and the 
power consumption can also be reduced. Simulation results 
show that more than 34% of logic power measured in FPGA 
can be saved when the proposed HESPA is enabled. 
Furthermore, the proposed architecture is implemented on a 
0.18μm standard cell library, which consumes 19.8K gates at 
a clock frequency of 200 MHz, which compares competitively 
with other state-of-the-art works in terms of hardware cost1. 
 

Index Terms — Deblocking Filter, H.264/AVC, Low Power 
Design, FPGA, Hardware Implementation. 

I. INTRODUCTION 

Digital video technology now plays an important role in 
multimedia communications. The transmission of video data 
requires low power, fast speed, high performance, and low 
cost, especially in networks with limited bandwidth. 
H.264/AVC is the advanced video coding standard jointly 
developed by the Video Coding Experts Group (VCEG) of 
ITU-T as Recommendation H.264 and by the Moving Picture 
Experts Group (MPEG) of ISO/IEC as International Standard 
14496-10 (MPEG-4 part 10) Advanced Video Coding (AVC) 
[1]. Figure 1 shows the functional blocks of an H.264/AVC 
encoder. Among these outstanding coding tools, the 
deblocking filter (DF) located inside the motion-compensated 
prediction path realized at both encoder and decoder sides of 
H.264/AVC, is one important tool to further increase coding 
efficiency and improve both objective and subjective video 
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Fig. 1. Block diagram of an H.264/AVC encoder. 

 
quality. The block-based coding structure of H.264/AVC 
produces artifacts known as blocking artifacts which are the 
unwanted discontinuities on each block boundary caused by 
both the quantization errors of the transform coefficients and 
compensation. A DF can improve the coding performance by 
reducing the bit rate by more than 9% while maintaining the 
same objective quality as the non-filtered video and achieving 
a subjective quality improvement [2]. 

The DF algorithm in H.264/AVC is highly adaptive and 
complex and being based on the conditions of block edges 
requires a large amount of computing resources. In fact, DF 
always contributes to approximately one third of the total 
computational complexity of an H.264 decoder [2], [4], and is 
the bottleneck of the entire H.264/AVC decoder. Each block 
edge needs to be conditionally processed according to the edge 
feature and pixel gradient along the edge. Almost every sample 
of a reconstructed frame needs to be reloaded from memory, 
either to be modified or used in determining whether 
intermediate samples should be updated; this demands a very 
large memory bandwidth. For that reason, DF always consumes 
significant time and energy during filtering. Therefore, an 
efficient DF hardware design with moderate memory access is 
required for real time processing of an H.264/AVC decoder or 
low-power applications, because battery operating time is the 
key to commercial success [3]. We focus on the issue of low 
power by proposing a cost efficient and power saving hardware 
architecture design of a DF in H.264/AVC. 

The remainder of the paper is organized in the following 
manner. Section II describes the DF algorithm used in 
H.264/AVC. The proposed architecture for DF is discussed in 
Section III. The implementation results and comparisons with 
other architectures are presented in Section IV. Finally, brief 
concluding remarks are included in Section V. 
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II. DEBLOCKING FILTER ALGORITHM 

This section reviews the deblocking filter algorithm 
employed in H.264/AVC. 

A. Deblocking Filter Order 

The DF uses one 4x4 block as a basic unit to process a 
macroblock (MB). The filtering order is to first filter along the 
four vertical edges from left to right and then to repeat along 
the horizontal edges from top to bottom while excluding the 
edges on the boundary of a frame. As shown in Fig. 2, the 
order of filtering is first from A, B, C, D, E, F, G, H first in 
Luma and then I, J, K, L in Cb, and finally M, N, O, P in Cr. 
After filtering is applied, pixels drawn in yellow may be 
modified on either side of a vertical or horizontal boundary in 
adjacent blocks, depending on the boundary strength (BS) and 
on the gradient of image samples across the adjacent edges. 
BS is an integer ranged form 0 to 4 that could be regarded as 
the filtering strength for updating samples. For Luma samples, 
if BS = 0, no filtering operation is required. If BS = 1-3, a 
normal filtering operation is applied to samples p0, p1, q0, 
and q1. If BS = 4, a stronger filtering is applied to samples p0, 
p1, p2, q0, q1, and q2. The BS is used to determine the 
appropriate strength of the filter applied to the edge. 

 

 
Fig. 2. Order of filtering for Luma and Chroma in one macroblock. 

B. Deblocking Filter Algorithm 

A group of samples from the set (p2, p1, p0, q0, q1, q2) in 
Fig. 2 may be filtered only if (1) is satisfied. 

BS 0

p0 q0

p1 p0

q1 q0









 

 

 

                 (1) 

If any condition in (1) is false, the filtering will not be 
applied. The purpose of the filtering threshold criteria is to 
disable the filtering operations and preserve the true edge 
when there is a relatively large absolute difference between 
samples across the block boundary in the original image. The 
thresholds   and   increase with the average of the 

quantization parameters (QP) of two adjacent blocks. When 
QP is small, a small gradient across the boundary is likely to 
exist due to the features of the image (not blocking effects but 
real edges), and such edges should be preserved by setting   
and   to be low. When QP is larger, blocking distortion is 

likely to be more significant, and  ,   are set higher so that 

stronger filtering can be applied. 
In H.264/AVC, the DF can be divided into two filtering 

process modes. One is the normal mode when BS = 1, 2, or 3, 
and the other is the stronger mode when BS = 4. Figure 3 
summarizes and illustrates the DF algorithm for luminance 
samples. For chrominance edge filtering, only p0 and q0 are 
modified. They are filtered in the same manner as luminance. 
Figure 3 classifies twelve different processing cases. In Case 0, 
no filtering operation is applied to the samples. Cases 1-4 
(drawn in blue as a group) are conditions for normal filtering 
modes, and Cases 5-11 (drawn in red as a group) are 
conditions for stronger filtering modes. In brief, the DF 
adaptively filters the adjacent samples on a 4x4 block edge for 
both of luminance and chrominance based on the threshold 
conditions ( ,  ), the threshold clipping variables (c0, c1), 

BS, QP, and the input pixel values. The implementation of DF 
hardware may include table look-up, pixel comparison, pixel 
filtering with addition, shift, pixel clipping in case of overflow 
and output to memories or display buffers. 

 

 
Fig. 3. H.264 deblocking filter algorithm for Luma samples. Where P2, P1, 
P0, Q0, Q1, and Q2 are pixel values after filtering is applied. 

III. PROPOSED ARCHITECTURE 

A. Block Diagram of the Proposed DF Architecture 

Figure 4 shows the block diagram of the proposed DF 
architecture where the solid line drawn in red is the sample 
data path, while the solid line in black indicates the control 
path and the dotted line is the input parameters feeding to DF 
Engine. A 4-stage pipeline filter inside the DF engine 
manages pipeline control, calculations of the threshold values, 
clipping functions, pixel filtering, and several conditions on 
each block edge based on DF algorithm. The required internal 
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memory resources including left and upper neighbor SRAMs, 
transposition buffers, and left neighbor buffer are used to store 
pixels on the top and left boundary of MB or intermediate 
filtered pixels. The DF selects input data produced by these 
memory blocks obeying the pixel data dependency according 
to the MB and the order of edge filtering. The horizontal edge 
skip block, which is implemented by the proposed horizontal 
edge skip processing architecture (HESPA) mechanism 
intelligently skips the unnecessary filtering on the horizontal 
edges. The test bench including some required filtering 
parameters such as boundary strength, un-filtered pixels, QPC, 
QPY, alpha offset, beta offset, and external pseudo memory 
used for storing final data is designed for verifying the 
correctness of the proposed DF Engine across the simulator. 

 

 
Fig. 4. Block diagram of the proposed DF architecture. 

B. Proposed Pipeline Strategy and Order of Edge Filtering  

DF requires a very large memory capacity to store 
temporary data in the filtering process, so the order of edge 
filtering affects the throughput significantly [7]. The order of 
standardized filtering for DF is from left to right and then 
from top to bottom sequentially on an MB as in Fig. 5 (a). In 
[7], Ke Xu et al. evaluated the control hazards, structure 
hazards, and data hazards in their pipeline architecture. In this 
DF design, we proposed a 4-stage pipeline filtering 
architecture for 1-D edge filtering. For edge filtering, several 
steps need to be judged or computed. These include the 
condition to be decided on each block, the calculations of the 
threshold values including alpha, beta, and the clipping 
functions, content activity check, and normal or stronger 
filtering. 

The goal of a pipeline design is to balance the length of 
each pipeline stage. If the stages are perfectly balanced, the 
speedup from pipelining equals the number of pipeline stages. 
Therefore, the goal is to perform edge filtering on an MB with 
fluent pipeline stages and without stall cycles. Each filtered 
output needs 4 clock cycles to complete filtering. Thus, the 
total number of cycles for filtering an MB with 48 edges plus 
4 cycles for initially loading the un-filtered pixels is 4 x 48 + 4 
= 196 cycles. To boost the speed of the DF process, the order 
of filtering is rearranged in a hybrid pattern to facilitate the 
deblocking of the pixels in a 4-stage pipeline fashion. 

 
(a) Sequential filtering order. 

 
(b) Adopted hybrid filtering order. 

Fig. 5. Sequential and hybrid order of filtering. The numbers inside the 
circles and squares denote the filtering order. 

 
We tried many ordering schemes in the simulation to deal 

with the hazard issues and finally obtained the optimal hybrid 
order as shown in Fig. 5 (b). Although the hybrid edge order 
of filtering is not identical to the sequential order specified in 
the H.264/AVC standard, the adopted order still obeys the 
same rule of filtering the left edge first and the bottom edge 
last for each 4x4 block and hence does not affect the data 
dependency. 

Coincidentally, the adopted filtering order is the same as 
that proposed by [7]. The advantage of this adopted order is to 
use as few as 4 transposition buffers to temporarily store 
filtered pixels. The transposition buffer is a 4x4 array to store 
16 pixels. It can be activated throughout both luma and 
chroma MBs by obeying the adopted filtering order meaning 
that the data reuse is at the unit of 4x4 basic blocks. For 
instance, filtering of edge6 may reuse filtered pixels of edge1. 
Once filtering of edge8 is completed, the transposition buffer 
can be switched to the next 4x4 basic block for storing the 
filtered pixels of edge10. For the traditional filtering order 
standardized in H.264/AVC shown in Fig. 5 (a), it does not 
reuse data well and requires more memory or transposition 
buffers to store filtered pixels. For the order of edge filtering 1, 
6, 10, 3, 7, 11, 17, 22, 26, 19, 23, 27, 33, 35, 41, and 43 of the 
different 4x4 blocks, we need transposition buffers to 
transpose data from the row to column to intermediately store 
pixels for the vertical filtering on horizontal edges. Because 
transposition buffers require at least 4 clock cycles to write the 
filtered pixels back to the current 4x4 block in our 4-stage 
pipeline, this filtering strategy does not proceed immediately 
with vertical filtering followed by horizontal filtering due to 
the delay of transposition buffer. By observing the filtering 
order carefully, we can observe that on some 4x4 blocks, the 
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transposition buffers encounter long waiting times from edge 
order 5 to 20, 9 to 24, 14 to 28, and 15 to 29 to serve edge20, 
24, 28, and 29, respectively. Therefore, we adopt upper 
neighbor SRAM to reuse the data in the design for storing the 
filtered results of B0, B1, B2, and B3 to be later used for edge 
order 20, 24, 28, and 29 as depicted in Fig. 6. Compared to Ke 
Xu et al. [7], we save transposition buffers for storing the 
upper MBs. 

 

 
Fig. 6. Blocks to be stored in the upper neighbor SRAM. 

C. Proposed Horizontal Edge Skip Processing Architecture 

In H.264/AVC DF, filtering on some pixels can be skipped 
when pixel differences and threshold values satisfy some 
specific conditions. By exploiting this feature, we propose an 
intelligent filtering scheme, horizontal edge skip processing 
architecture (HESPA), to skip the unnecessary filtering on the 
horizontal edges. The proposed HESPA is applied to the 
horizontal edges with BS = 0 or the edges on the top boundary 
of a frame to deactivate DF execution. In this way, the 
processing cycles of filtering can be saved and the power 
consumption can also be reduced. 

HESPA applies to both luma and chroma MB edges. There 
are 48 edges to be filtered in an MB, and half of them, 24 
edges, could possibly be skipped if the HESPA is enabled. To 
realize HESPA, functional blocks including left neighbor 
buffer, finite state machine (FSM) for left neighbor SRAM 
read/write (R/W), and some other control logic are 
implemented as shown in Fig. 7. 

 

 
Fig. 7. Proposed FSM for HESPA architecture. 

Because the adaptive or skipped filtering steps make the left 
neighbor SRAM not accessed in sequential order, we need 
FSM and left RAM address and read/write generator to serve 
left neighbor SRAM adequately. Though HESPA increases 
some gate counts and has a small control complexity, it only 
consumes 10% of the total gate counts. Section IV.-B shows 

the results of the synthesis, which saves filtering cycles and 
power consumption with few cost penalties. 

D. Memory Allocation and Transposition Buffer Usage 

In our DF architecture for storing temporary data during the 
filtering process, three types of internal memory resources are 
required. They are left neighbor SRAM, which stores the 
filtered pixels on the left boundary MB edge, upper neighbor 
SRAM, which provides the necessary pixels to the upper 
boundary of the current MB and transposition buffers, which 
each operates on the unit array of a 4x4 block of the current 
MB to store intermediate pixels. For a QCIF video with 4:2:0 
format, the size of left neighbor SRAM is fixed at 32x32 bits 
(including 16x32 bits for luma and 16x32 bits for chroma), the 
size of upper neighbor SRAM is 352x32 bits (including 
176x32 bits for luma and 176x32 bits for chroma), and the 
size of transposition buffers is 640 bits (here we count the left 
neighbor buffer used in HESPA as one transposition buffer). 

In this design, left and upper neighbor SRAMs are 
implemented with two-port SRAM and the data bus is 32-bit 
wide to access 4 samples each time. Unlike the work in [8], we 
do not combine the two separate neighbor SRAMs into a single 
SRAM block and hence our approach offers the flexibility to 
manage pixels allocation in SRAM properly without data 
conflicts. The separate SRAM facilitates the correct 
arrangement of temporary data for our proposed HESPA 
mechanism. In HESPA, because filtering steps are skipped in 
the filtering process, the data flow should be managed carefully 
in terms of memory allocation. Otherwise, the samples are not 
stored for the correct space and time leading to incorrect 
filtering. Transposition buffers are implemented with flip flops 
in this design. Each transposition buffer consists of 16 samples 
(4x4) with a total of 128 bits or 16 bytes, which either 
transposes the pixels from the row to column or stores filtered 
data temporarily where the read/write process is accessed by 
memory control logic. The architecture is shown in Fig. 8. 

 

 
Fig. 8. Transposition buffer architecture. 

The proposed order of edge filtering, together with the 
proposed memory organization and memory update 
mechanism are helpful in reducing the required memory 
bandwidth and maximizing the 4-stage pipeline throughput, 
making the filtering processes much more efficient. 
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IV. EXPERIMENTAL RESULTS AND PERFORMANCE 

EVALUATION 

A. Statistics of Boundary Strength 

DF uses BS to determine the appropriate strength of the 
filter applied to the edge. We test three QCIF video sequences 
with 100 frames (Foreman, Mobile, and Stefan) for the 
encoding type IPPP…. The statistics of luma blocks for each 
BS and the percentage of BS = 0 on horizontal edges for 
different sequences are listed in TABLE I. We can see that BS 
= 0 occupies the highest proportion of distributions. Moreover, 
from TABLE I we can observe that BS = 0 distributes 
uniformly on both horizontal and vertical edges. Almost half 
of zero BS takes place on horizontal edges. Therefore, the 
percentages of filtering cycles saved for zero BS on the 
horizontal edges are 36.2%, 32.1%, and 30.6% for Forman, 
Mobile, and Stefan video sequences respectively. 

TABLE I 
BS = 0 ON HORIZONTAL EDGE FOR DIFFERENT VIDEO SEQUENCES 

 
These observations support the proposal of the edge skip 

aware mechanism on horizontal edge filtering. The 
opportunities for skipping edge filtering are relatively frequent. 
The number of cycles for filtering an MB could be reduced 
from 196 down to 100 clock cycles per MB in the best case, 
considerably saving power consumption. 

B. Synthesis Results 

The proposed DF hardware architecture is implemented in 
Verilog RTL codes. They are verified with RTL simulations 
and the results are matched with the JM reference software, 
for the same rate-distortion performance. The proposed 
architecture is synthesized using a Design Compiler with a 
0.18μm standard cell library. The results show that the 
hardware implementation consumes 19.8K gates when 
running at 200 MHz, where the memory elements (SRAM for 
neighbor and left MBs) are excluded. From the synthesis 
results in TABLE II, we can see that more than half of the 
resources (50.22%) are spent on transposition buffer, left 
neighbor buffer and display buffer. This is the reason we do 
not adopt the 2-D filtering architecture as proposed in [8]-[11]. 
Otherwise, a higher number of gates and larger layout areas 
are required in the DF hardware implementations. The 4-stage 
pipeline filter engine uses only approximately one-third 
(30.09%) of the total DF areas. To implement the HESPA 
intelligent mechanism, we require an additional 2.1K gates to 
realize the architecture. The additional resources for HESPA 
include the left neighbor buffer, the finite state machine for 
the left neighbor SRAM R/W access, and some other logic 
controls for edge counter awareness. 

TABLE II 
SYNTHESIS RESULTS FOR PROPOSED MODULES 

Module Gate Counts Main Function % 

DBF_pipeline 5970.122 4-stage pipeline filtering function 30.09 

DBF_reg_ctrl 9963.548 
Transposition Buffer, Left Neighbor 

Buffer and Display Buffer 
50.22

DBF_mem_ctrl 3907.743 
Memory Control for pixel Read/Write 

and order filtering counters 
19.69

Total 19841.413  100 

C. Power Analysis 

The Verilog code is then synthesized to a FPGA. The 
resulting net-list is placed and routed to field-programmable 
gate arrays. The power consumptions of the DF hardware 
implementations on FPGA are estimated by a power 
estimation tool [15]. To estimate real power consumption of 
the DF architecture in activity or in operation, a timing 
simulation of that DF hardware implementation is first done in 
the test bench and the signal activities are stored in VCD files. 
Afterwards, these VCD files are used to estimate the power 
consumption of our design. Typically the power consumptions 
of the DF hardware implementation are divided into three 
main categories: signal power, logic power, and clock power. 
To evaluate the power consumption of the DF design, we 
compare with [14] because both have the same experimental 
conditions (Clock rate at 50 MHz and both use block 
SelectRAMs for internal memory). TABLE III compares the 
power estimation of our design with [14], which has two 
different hardware architectures (DBF_16x16 and DBF_4x4). 

TABLE III 
POWER CONSUMPTION ESTIMATION COMPARISONS WITH [14] 

Category [14] DBF_4x4  [14] DBF_16x16 Proposed Reduction 

Clock 56.37 mW 50.36 mW 46.63 mW 3.73 mW 

Logic 145.65 mW 52.47 mW 13.90 mW 38.57 mW 

Signal 83.56 mW 79.39 mW 42.04 mW 37.35 mW 

Total 285.58 mW 182.22 mW 102.57 mW 79.65 mW 

 
As shown in TABLE III, we can observe that the proposed 

DF hardware consumes less power than [14] in all categories. 
Moreover, the proposed hardware has a 38.57mW power 
reduction in logic compared with the DBF_16x16 hardware 
[14], which is the greatest reduction among the three 
categories. This is because fewer computation cycles are used 
in the proposed hardware. The differences in internal memory 
resources and hardware performance comparisons between the 
proposed DF architecture and [14] are listed in TABLE IV 
and TABLE V respectively. From TABLE IV we see that [14] 
utilized left neighbor memory instead of buffers to store 
intermediate data. This causes more power consumption when 
utilizing on-chip SRAM instead of using the buffers [13]. 
Also, from TABLE V, 5248 or 5376 processing cycles is 
required to filter an MB in [14]. In this scheme, only 100-196 
cycles/MB is required. A possible reason is that [14] adopted 
an 8-bit data bus to access each pixel while our design utilized 
a 32-bit wide data bus to access 4 pixels each time. 

  Foreman Mobile Stefan 
Total BS Counts 316800 316800 316800 

BS = 0 228373 202745 194781 
BS = 0 on Horizontal edge 114651 101657 96969 

Cycles Saving 36.2% 32.1% 30.6% 
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TABLE IV  

INTERNAL MEMORY COMPARISONS WITH [14] 

 
TABLE V 

HARDWARE PERFORMANCE COMPARISONS WITH [14] 
HW Comparison [14] Proposed 

Gate Counts (without internal buffers) 5.3K 9.9K 

Technology 0.18μ 0.18μ
Processing cycles/MB 5248/5376 100-196 

D. Power Analysis of HESPA 

We now evaluate the power saving for the proposed 
HESPA approach. Table VI lists three categories of power 
estimation and compares the power reduction between 
HESPA in the on state and HESPA in the off state. The 
proposed HESPA can save up to one-third (34%) of total 
power consumption in logic and signal processing and thus 
can speed up DF processing significantly. This result matches 
with Section IV.-A, which describes that BS = 0 on horizontal 
edges is about one-third of total BS counts. Therefore, roughly 
one-third of the total number of processing cycles can be 
saved when the BS is zero on horizontal edges or the edges 
are on the top boundary. The number of cycles saved 
corresponds to power saving in the simulation because we use 
enable bit to stop DF clock or to halt DF processing when 
filtering is completed. However, no reduction in clock power  
 

consumption because clock power is due to the clock tree used 
in the FPGA. The topology of the clock tree is fixed once 
FPGA completes placings and routings. Since we do not 
change clock rate during the simulations, the power 
consumption on the clock tree is therefore fixed. 

TABLE VI 
POWER COMPARISONS BETWEEN HESPA ON/OFF 

Sequence
Category 

100 frames of Forman QCIF 

 HESPA OFF  HESPA ON Reduction 

Clock 46.63 mW 46.63 mW 0 

Logic 21.10 mW 13.90 mW 34.12% 

Signal 63.80 mW 42.04 mW 34.11% 

Whole FPGA 624.36 mW 579.08 mW 7.25% 

E. Performance Comparisons 

This section compares our DF hardware performance with 
various state-of-the-art designs. As shown in TABLE VII, the 
design requires fewer transposition buffers and fewer gate 
counts than [7], which used a similar design approach to this 
one (pipeline stage and 1-D filtering architecture). Although 
this design requires more processing cycles than in Tobajas et 
al. [8], we can lower the gate count and achieve lower 
transposition buffer usage. That is because in [8], a double 
filter with two identical filtering units was proposed as 
opposed to our 1-D filtering strategy. Moreover, the proposed 
HESPA, an intelligent edge skip processing approach, can 
achieve as few as 100 cycles per MB in the best case, which 
even outperforms the 2-D architecture in [8] (110 cycles). The 
design consumes 19.8K gates at a clock frequency of 200 
MHz in a 0.18μm standard cell library. The hardware cost of 
the proposed scheme is very competitive compared with other 
state-of-the-art literatures using 1-D filtering architecture. 

TABLE VII 
COMPARISONS WITH STATE-OF-THE-ART LITERATURES 

Reference Filter Pipeline 1-D / 2-D Processing Order RAM type RAM size 
Transposition 
Buffer (4x4) 

Tech 
Gate 

Count 
Processing 

cycles per MB

[4] non-pipeline 1-D sequential basic two-port 2x80x32 4 0.25um 20.66k 614 

[5] 4-stage pipeline 1-D sequential basic two-port 32x32 2 0.13um 7.5k(*) 192 

[6] 5-stage pipeline 1-D hybrid two-port 
32x32 / 
32x32 

1 0.18um 18.7k 210 or 222 

[7] 5-stage pipeline 1-D hybrid single-port
2x96x32 / 

2Nx32 
7 0.18um 21.492k 204 

[8] 5-stage pipeline 2-D hybrid single-port 64x32 8 0.18um 12.6k(*) 110 

[12] non-pipeline 1-D sequential improved two-port 1x160x32 2 0.25um 18.77k 646 

[14] non-pipeline 1-D hybrid two-port 1792x8 none FPGA 5.3k(*) 5248/5376 

[16] non-pipeline 1-D hybrid two-port 
1x64x32 / 
2x96x32 

none 0.25um 24k 446 

[17] non-pipeline 1-D hybrid two-port 16x32 2 0.25um 13.41k 300 

[18] non-pipeline 1-D hybrid single-port 1x160x32 4 0.18um 19.64k 250 

[19] non-pipeline 1-D hybrid two-port 32x16 2 NA NA 232 

Proposed 4-stage pipeline 1-D hybrid two-port 384x32 5 0.18um 
19.8k / 
9.9k(*) 

100~196 

NOTE: (*) GATE COUNT ESTIMATIONS EXCLUDING ITS TRANSPOSITION BUFFER AND MEMORY

Memory Required [14] (bits) Proposed (bits) 

Left Neighboring Memory 384x8=3072 32x32=1024 

Upper Neighboring Memory 
(for QCIF) 

1408x8=11264 352x32=11264 

Transposition Buffers and Left 
Neighbor Buffer 

0 5x128=640 
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V.  CONCLUSION 

A deblocking filter within the motion compensation loop is 
used to reduce the artifacts and enhance subjective views. This 
work adopts a reasonable strategy of edge filtering order to 
enhance the reusability of intermediate data, and utilizes as 
few as five transposition buffers for storing temporary data 
without affecting the standard-defined data dependency. We 
employ 4-stage pipeline filtering to boost the speed of the 
deblocking filter. The proposed HESPA mechanism skips 
unnecessary filtering on the horizontal edges so that the total 
number of filtering edges for one MB ranges adaptively from 
24 to 48. Finally, we implement finite state machine to 
properly arrange memory R/W pixels on left neighbor SRAM 
to realize the proposed HESPA method. The hardware of our 
deblocking filter architecture can adaptively achieve 100~196 
cycles per MB throughput for H.264/AVC real time decoding. 
The architecture is designed in Verilog and implemented by 
0.18μm CMOS technology. The gate count is only 19.8K 
when synthesized at 200 MHz, excluding the memory cost. 
The system throughput can easily support 1080HD video 
format at 30 fps with 70MHz clock frequency for low power 
and high definition video applications. 
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