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Abstract. A wavelet-based lossy-to-lossless image compression technique with 
polygon-shaped ROI function is proposed. Firstly, split and mergence 
algorithms are proposed to separate concave ROIs into smaller convex ROIs. 
Secondly, row-order scan and an adaptive arithmetic coding are used to encode 
the pixels in ROIs. Thirdly, a lifting integer wavelet transform is used to 
decompose the original image in which the pixels in the ROIs have been 
replaced by zeros. Fourthly, a wavelet-based compression scheme with adaptive 
prediction method (WCAP) is used to obtain predicted coefficients for 
difference encoding. Finally, the adaptive arithmetic coding is also adopted to 
encode the differences between the original and corresponding predicted 
coefficients. The proposed method only needs less shape information to record 
the shape of ROI and provides a lossy-to-lossless coding function; thus the 
approach is suitable for achieving the variety of ROI requirements including 
polygon-shaped ROI and multiple ROIs. Experimental results show that the 
proposed lossy-to-lossless coding with ROI function reduces bit rate as 
comparing with the MAXSHIFT method in JPEG2000; moreover, when the 
image without ROI is compressed by the proposed lossless coding, the proposed 
approach can also achieve a high compression ratio. 

Keywords: Image compression, region of interest (ROI), lossy-to-lossless 
coding, ROI coding, difference encoding. 

1   Introduction 

Image compression is used to reduce the image data size as small as possible under a 
tolerance limit of errors. In general, the techniques of image compression can be 
classified into two major categories: loss and lossless. Lossy compression requires not 
only less storage space, but also less transmission time or bandwidth, while lossless 
compression can completely reconstruct the original data. In addition to offering high-
quality compression, an effective approach to image compression should further 
incorporate value-adding functions, such as ROI coding and lossy-to-lossless coding. 
A ROI refers to a special region in an image that is of particular interest or imperative 
importance to the user who can free to identify the ROI based on ones needs. In 
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general, an image can be separated into important and non-important parts for a 
particular purpose; the important part represented by the ROI is often compressed by a 
lossless style while the non-important part can be compressed by a lossy-to-lossless 
style to achieve a tradeoff between the fidelity and the coding efficiency. That is, the 
ROI undergoes lossless compression first and then finer details of the remaining part 
of the image are gradually added at a later stage to achieve lossy-to-lossless coding. 

A lot of different techniques of ROI coding have been proposed recently. Li and Li 
[1] proposed shape adaptive discrete wavelet transform (SA-DWT) for arbitrarily 
shaped object coding. With the use of the transform, the spatial correlation and 
wavelet transform properties, such as locality property and self-similarity across 
subbands, are preserved. Tasdoken and Cuhadar [2] proposed region-based integer 
wavelet transform (RB-IWT) as an alternative to SA-DWT. The RB-IWT enables 
lossless coding of image regions which can not be achieved by SA-DWT due to the 
fixed-precision representation of wavelet coefficients. Fukuma et al. [3] introduced a 
switching wavelet transform by using shorter-length basis for ROI and longer-basis 
for non-ROI. The bases with different lengths provide better compression quality than 
a fixed-length wavelet transforms. Liu et al. [4] proposed a method for chromosome 
image compression which combines lossless compression of chromosome ROIs with 
lossy-to-lossless coding for the remaining image parts. The method performs a 
differential operation on chromosome ROIs for decorrelation, and is followed by 
integer wavelet transforms on ROIs and the remaining image parts. The boundary of 
chromosome ROIs are then traced by chain code method. 

The model of ROI coding supported in JPEG2000 is based on scaling the wavelet 
coefficients. The technique can be further classified into two different methods: 
general scaling-based and MAXSHIFT method [5]. For a general scaling-based 
method, a shape encoder/decoder is required to encode/decode the shape information 
(i.e., the shape of ROI). This makes both encoder and decoder more complicated and 
increases the bit rate; moreover, the method needs a ROI mask indicating which 
wavelet coefficients have to be transmitted exactly in order for the receiver to 
reconstruct the desired region perfectly. In contrast, the MAXSHIFT method does not 
need the shape information. However, if there are multiple ROIs with different 
degrees of interest, the MAXSHIFT method has to handle more difficult problems than 
a general scaling method, since the dynamic range has to be increased significantly.  

To solve the mentioned problems, we propose a wavelet-based image compression 
technique with polygon-shaped ROI and lossy-to-lossless coding. Firstly, split and 
mergence algorithms are proposed to separate concave ROIs into smaller convex 
ROIs. Secondly, row-order scan and an adaptive arithmetic coding are used to encode 
the pixels in ROIs. Thirdly, a lifting integer wavelet transform is used to decompose 
the original image in which the pixels in the ROIs have been replaced by zeros. 
Fourthly, a wavelet-based compression scheme with adaptive prediction method 
(WCAP) is used to obtain predicted coefficients for difference encoding. Finally, the 
adaptive arithmetic coding is also adopted to encode the differences between the 
original and corresponding predicted coefficients. We only need less shape 
information to achieve the polygon-shaped ROI and multiple ROIs with different 
degrees of interest. Furthermore, the proposed approach does not need to generate the 
ROI mask. 
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The remaining sections of this paper are organized as follows. In Section 2, we 
present the proposed approaches: split and mergence algorithms, lifting integer 
wavelet transform, and the WCAP method. Experiments are reported in Section 3. 
Conclusions are given in Section 4. 

2   The Proposed Approach  

The block diagram of the proposed approach shown in Fig. 1 is composed of seven 
processes: ROI selection, Graham’s scan algorithm [6], split and mergence 
algorithms, row-order scan, lifting integer wavelet transform, WCAP method [7], and 
adaptive arithmetic coding.  
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Fig. 1. The block diagram of the proposed approach 
 
ROIs are always formed by polygons or circles. When a ROI is formed by a 

polygon, the ROI is represented by the ordered vertices of the polygon and the 
ordered vertices just constitute the shape information. A polygon R in an image is 

called convex if line segment ba  for any pair of pixels a, b in R is completely in R. 
The convex hull of a polygon R is the smallest convex polygon containing R and 
represented by its convex vertices. Examples of polygon-shaped ROI and convex 
polygon are given in Fig. 2. In Fig. 2 (a), a polygon-shaped ROI is represented by 
ordered vertices: P1, P2, P3, P4, P5, P6, P7, and P8, where Pi, 1 ≤ i ≤ 8, are denoted by 
coordinates in the image. In Fig. 2 (b), a convex polygon is represented by 
corresponding convex vertices: P1, P2, P3, P4, and P5. On the other hand, when the 
ROI is formed by a circle, the shape of ROI is represented by the center point and 
radius of the circle. Similarly, the center point and radius just constitute the shape 
information. 
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Fig. 2. Examples of polygon-shaped ROIs and convex polygons. (a) A polygon-shaped ROI and 
the ordered vertices. (b) A convex polygon and the convex vertices. 
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2.1   Split and Mergence Algorithms  

Given the shape information, both the encoder and the decoder use split and mergence 
algorithms to split the concave ROI into multiple convex ROIs. Then we can simply 
use row-order scan to extract all coefficients in all shaped ROIs. Hence, the encoder 
just needs to transmit very little shape information to the decoder, and the decoder can 
perfectly reconstruct the ROIs. The split and mergence algorithms consist of three 
steps: (i) judging whether a given ROI is convex, (ii) exploiting split algorithm to 
separate the ROI into multiple non-overlapped convex ROIs if necessary, and (iii) 
merging two or more ROIs to constitute a larger convex ROI if the mergence still 
satisfies the condition of convex hull. 

A given ROI is convex if each ordered vertex is exactly scanned once by Graham’s 
scan algorithm, and these vertices must form a convex ROI; otherwise, split algorithm 
will be used to achieve the necessary condition of convex hull. Split algorithm is a 
recursive approach dividing a ROI into multiple non-overlapped smaller convex ROIs 
step by step. The algorithm is divided into the following four steps: 

Step 1. Identify the convex ROI by tracing vertex one after one in the given ordered 
vertices. If any current vertex violates the condition of convex hull, a smaller 
convex ROI will be successfully split. Meanwhile, the algorithm pushes a 
vertex prior to the current vertex into a temporary queue.  

Step 2. The split is processing until the given ordered vertices is empty, and one or 
more convex ROIs are obtained upon the completion of this step. 

Step 3. All vertices in the temporality queue are ejected to compose new ordered 
vertices for subsequent steps.  

Step 4. Repeat from Step1 until no ROI to be split. 

After all non-convex ROIs are split, mergence algorithm is then performed to 
merge adjacent convex ROIs into larger convex ROIs by the following two steps:  

Step 1. Any two adjacent convex ROIs (i.e., there exists a common boundary between 
the two ROIs) is merged to generate a larger convex ROI if they satisfy the 
condition of convex hull. 

Step 2. The result of Step 1 is regarded as the input of mergence algorithm for the 
next step until no two adjacent ROIs can be further merged.  

Illustration of the split and mergence algorithms is shown in Fig. 3. An original 
ROI composed of ordered vertices: P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, and P11 is 
given in Fig. 3 (a). The first splitting convex ROI (P2, P3, P4) is shown in Fig. 3 (b); 
then four convex ROIs, (P2, P3, P4), (P4, P5, P6), (P6, P7, P8), and (P8, P9, P10, P11), are 
successively split as shown in Fig. 3 (c). Meanwhile, the ordered vertices (P1, P2, P4, 
P6, P8, P11) is pushed into the temporary queue and regarded as an input ROI in the 
second step as shown in Fig. 3 (d). Two convex ROIs, (P1, P2, P4) and (P4, P6, P8, 
P11), are split as shown in Fig. 3 (e). The ordered vertices (P1, P4, P11) forms a convex 
ROI in this step; thus the split algorithm stops and mergence algorithm starts as 
shown in Fig. 3 (f). Two convex ROIs, (P1, P2, P4) and (P1, P4, P11), are merged to 
constitute (P1, P2, P4, P11) as shown in Fig. 3 (g). Two convex ROIs, (P4, P5, P6) and 
(P4, P6, P8, P11), are merged to constitute (P4, P5, P6, P8, P11) as shown in Fig. 3 (h). 
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Fig. 3. Illustration of the split and mergence algorithms. (a) Original ROI. (b) The first convex 
ROI is split. (c) Four convex ROIs are obtained after the first step. (d) (P1, P2, P4, P6, P8, P11) 
forms an input ROI in the second step. (e) Two convex ROIs, (P1, P2, P4) and (P4, P6, P8, P11), 
are obtained after the second step. (f) (P1, P4, P11) forms a convex ROI. (g) (P1, P2, P4) and (P1, 
P4, P11) are merged to generate (P1, P2, P4, P11). (h) (P4, P5, P6) and (P4, P6, P8, P11) are merged 
to constitute (P4, P5, P6, P8, P11). 

For each non-overlapped convex ROI, convex vertices are linked to form the 
boundary of the convex ROI and then row-order scan is adopted to scan all 
coefficients in the multiple convex ROIs. Thus we can precisely identify all 
coefficients in the non-overlapped convex ROI. For circular-shaped ROI, shape 
information is directly used to identify all coefficients in the ROI without using split 
and mergence algorithms. Thus we demonstrates that the proposed approach indeed 
only needs less shape information to achieve the ROI coding as compared with the 
conventional shape coding methods. 

The advantage of the MAXSHIFT method surpassed to the general scaling-based 
method is that the ROI coding does not need shape information at the decoder. 
However, generating the ROI mask still remains at the encoder, and the ROI mask 
calculation is complicated. Thus the computational complexity of these two methods 
is relatively higher than that of split and mergence algorithms. Since the proposed 
approach does not need to generate the ROI mask and is easy to implement, it is more 
efficient for lossless compression with ROI selection. 

2.2   Lifting Wavelet Transform 

Our wavelet transform was implemented by lifting scheme performed with the 
following three steps: (i) split step for sorting the input into the even and the odd 
entries, (ii) prediction step for giving the value at the even entries and predicting the 
value at the odd entries, and (iii) update step for updating even entries up to date to 
reflect knowledge of the input. Lifting integer wavelet transform means that the 
wavelet transform can transform integers to integer coefficients and perfectly 
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reconstruct the original integers from the integer coefficients. Lifting integer wavelet 
transform is capable of accomplishing fast in-place computation and especially 
appropriate for lossless data compression. A variety of transforms can be applied for 
lossless data compression. Nevertheless, according to the suggestions of the previous 
work [7], S+P transform is generally considered to be the best one. The S+P 
transform is described as 
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where [.] is a notation of signal, d[n] and s[n] are the highpass and lowpass 
coefficients respectively after the transform, x[.] denotes the original signal, and ⎣.⎦ is 
a truncation operator.  

2.3   WCAP Method 

The WCAP method was proposed by Chen et al. [7]. Initially, the method analyzes the 
higher-correlation coefficients, where wavelet coefficients are regarded as the 
predictor (independent) and response (dependent) variables of a prediction equation. 
Then based on the higher-correlation coefficients, the method launched the selection 
of predictor variables using a conditional statistical test to determine which relative 
predictor variables should be included in the prediction equation. The generated 
prediction equations are then applied to predict most wavelet coefficients except the 
lowest-resolution coefficients.  

In most previous studies, the predictions were generally conducted with a fixed 
number of predictor variables at fixed locations. Actually, every kind of images not 
only has its own statistical distribution but also demonstrates different properties in 
different wavelet subbands. To achieve a more accurate prediction for compression, 
the number of predictor variables must be adaptively adjusted based on the image’s 
properties. Thus instead of relying on a fixed number of predictors on fixed locations, 
the WCAP method uses adaptive prediction approach to overcome the 
multicollinearity problem and takes the wavelet interscale persistence and intrascale 
clustering properties to achieve high compression ratio.  

In general, the probability distribution of the symbols to be encoded is unknown. 
Thus a method called adaptive arithmetic coding [8] which is combined from an 
adaptive probability estimation and an arithmetic coding is pursued to increase 
compression ratio. Adaptive arithmetic coding uses a real number to represent a 
sequence of symbols and updates the probability of symbol based on distribution of 
input symbol, whenever getting one input symbol. Finally, compression of images is 
achieved via this adaptive arithmetic coding.  
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3   Experiments 

In our experiments, all test images are 512×512 gray-level images as shown in Fig. 4. 
The ROIs are manually selected. If there are ROIs selected, the ROIs will be encoded 
by lossless style and the remaining parts are encoded by lossy-to-lossless style; 
otherwise, the entire image will be encoded by lossless style. At first, the polygon-
shaped ROIs and progressive lossy-to-lossless coding were examined to demonstrate 
the abilities of the proposed approach as shown in Fig. 5 (a). In Fig. 5 (b), a ROI was 
selected on the lena’s face and partial hat for lossless encoding. The remaining part of 
the image was gradually added to reconstruct the original image. As indicated from 
Figs. 5 (c) to (i), the remaining part was divided into eight bitplanes and starts 
bitplane encoding from most significant bit (MSB) to least significant bit (LSB) to 
achieve progressive lossy-to-lossless coding.  

The comparison of bit rates among adaptive arithmetic coding, MAXSHIFT 
method, and the proposed approach is shown in Table 1. From the table, we find that 
the proposed approach has the best compression rate for all six standard images. To 
understand the improved degree of the proposed approach over other methods in 
compression rate, we here define an improvement ratio (IR) to evaluate the 
improvement of compression performance for method B over method A as 

 

%100
methodofbitrate

 method of bitrate method of bitrate ×−=
A

BA
IR .                   (2) 

 

Here, the MAXSHIFT method was adopted to evaluate the improvement ratio of the 
proposed approach. One polygon-shaped ROI was selected on each of the six test 
images; the ROI approximately covers 15 - 25% of the images. The improvement 
ratios are given in Table 1. From the table, we find that the improvement ratios of the 
proposed method over the MAXSHIFT method are approximately 2.01 - 6.02%. 

(a) Lena (b) Goldhill (c) Boat

(d) Barbara (e) Baboon (f) Airplane  

Fig. 4. Six test gray-level images 
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(c) Bitplane 1~2

(d) Bitplane 1~3 (e) Bitplane 1~4

(b) ROI 

(f) Bitplane 1~5

(g) Bitplane 1~6 (h) Bitplane 1~7 (i) Bitplane 1~8

(a) Original image 

 

Fig. 5. Progressive lossy-to-lossless coding with polygon-shaped ROI 

Table 1. The comparison of bit rates among adaptive arithmetic coding, MAXSHIFT method, 
and the proposed approach 

.           Method 
Image 

Adaptive 
arithmetic 

 coding 

MAXSHIFT 
method 

The proposed 
approach 

Improvement 
ratio 

Lena 4.86 4.65 4.49 3.44% 

Goldhill 5.44 5.23 5.01 4.21% 

Boat 5.02 4.65 4.37 6.02% 

Barbara 5.71 5.19 4.95 4.62% 

Baboon 6.62 6.48 6.35 2.01% 

Airplane 4.62  4.04 3.81 5.69% 

 

The compressions without ROI selection were also examined. The comparison of 
the proposed method with other lossless coding techniques: CALIC [9] and 
JPEG2000 are given in Table 2. From the table, we can find that the proposed 
approach offers a better performance than the other two methods. The improvement 
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ratios of the proposed method over the JPEG2000 and CALIC methods are from 7.36 
to 10.7% and from 1.69 to 5.46%, respectively. 

As indicated by the above experiments, the main contributions of the proposed 
approach are to offer the high-performance polygon-shaped ROI coding and 
progressive lossy-to-lossless coding. Moreover, the proposed approach is also 
superior to JPEG2000 and CALIC methods for lossless compression without ROI 
selection. 

Table 2. Comparison of lossless compression for JPEG2000, CALIC, and the proposed 
approach in bits/pixel 
 

     Method 
Image 

JPEG2000 CALIC 
The proposed 

approach 
Lena 4.33 4.10 4.01 

Goldhill 4.85 4.58 4.33 

Boat 4.42 4.15 4.08 

Barbara 4.81 4.54 4.42 

Baboon 5.98 5.66 5.54 

Airplane 3.82 3.55 3.44 

4   Conclusions 

In this paper, a wavelet-based image compression technique with polygon-shaped 
ROI function and lossy-to-lossless coding was proposed. Firstly, split and mergence 
algorithms were proposed to separate concave ROIs into smaller convex ROIs. 
Secondly, row-order scan and an adaptive arithmetic coding were used to encode the 
pixels in ROIs. Thirdly, a lifting integer wavelet transform was used to decompose the 
original image in which the pixels in the ROIs had been replaced by zeros. Fourthly, a 
wavelet-based compression scheme with adaptive prediction method (WCAP) was 
used to obtain predicted coefficients for difference encoding. Finally, the adaptive 
arithmetic coding was also adopted to encode the differences between the original and 
corresponding predicted coefficients. 

The proposed approach possesses the following advantages: (i) only needing 
less shape information to reconstruct the ROIs, (ii) providing a progressive lossy-
to-lossless coding, achieving polygon-shaped ROIs, and supporting multiple ROIs. 
Thus the proposed approach is suitable for achieving the variety of ROI 
requirements. Experimental results show that the proposed lossy-to-lossless coding 
with ROI is superior to the MAXSHIFT method in JPEG2000; moreover, for 
lossless compression without ROI selection, the proposed approach has also 
obtained the best performance. 

Now, the ROIs are manually selected; further study on automatic determination of 
ROIs will be achieved by integrating the level set methods [10]. 
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