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Hybrid LMS-MMSE Inverse Halftoning Technique
Pao-Chi Chang, Che-Sheng Yu, and Tien-Hsu Lee

Abstract—The objective of this work is to reconstruct high
quality gray-level images from bilevel halftone images. We develop
optimal inverse halftoning methods for several commonly used
halftone techniques, which include dispersed-dot ordered dither,
clustered-dot ordered dither, and error diffusion. At first, the
least-mean-square (LMS) adaptive filtering algorithm is applied in
the training of inverse halftone filters. The resultant optimal mask
shapes are significantly different for various halftone techniques,
and these mask shapes are also quite different from the square
shape that was frequently used in the literature. In the next step,
we further reduce the computational complexity by using lookup
tables designed by the minimum mean square error (MMSE)
method. The optimal masks obtained from the LMS method are
used as the default filter masks. Finally, we propose the hybrid
LMS-MMSE inverse halftone algorithm. It normally uses the
MMSE table lookup method for its fast speed. When an empty cell
is referred, the LMS method is used to reconstruct the gray-level
value. Consequently, the hybrid method has the advantages
of both excellent reconstructed quality and fast speed. In the
experiments, the error diffusion yields the best reconstruction
quality among all three halftone techniques.

Index Terms—Error diffusion, inverse halftoning, LMS adaptive
filter, MMSE table lookup, ordered dithering.

I. INTRODUCTION

H ALFTONE techniques, which convert gray-level im-
ages into bilevel images, have been widely applied

to the printing of newspapers, magazines, books, as well as
fax machines and printers [1], [2]. The inverse halftoning
processes, i.e., the reconstruction of gray-level images from
bilevel halftoned images, also get increasing attention. The
reconstruction process is necessary in at least two situations.
The first is when the output device is capable of showing color
or gray-level images, such as the computer display, a carefully
reconstructed continuous-tone image should deliver better
quality than a halftone image for an original continuous-tone
image. The second is when an image processing technique is
applied to a halftone image, it will be more accurate to process
it in the original continuous-tone domain [3]. Moreover,
halftoning is basically a lossy process. It is impossible to get
a perfect reconstruction without distortion from a halftone
image. Nevertheless, it is interesting to know how close the
reconstruction quality can be to the original image.

In this work, we discuss inverse halftoning techniques for the
three most widely used halftone techniques, which include dis-
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Fig. 1. Block diagram of the LMS adaptive filtering algorithm in the training
of inverse halftone reconstruction.

persed-dot ordered dither, clustered-dot ordered dither, and error
diffusion [1]. We consider a general inverse halftoning process
that includes two parts, the classification and the reconstruction.
Halftone classification is the pre-processing of reconstruction.
Different halftone techniques result in very different statistical
properties. A successful classification can allow a distinct de-
sign of reconstruction filters with respect to each halftone tech-
nique, consequently yield better reconstruction quality. We have
previously presented a classification technique with back propa-
gation neural networks based on the enhanced one- dimensional
correlation of halftone images [4]. It can correctly classify sev-
eral most widely used halftoning techniques. Thus in this paper,
we assume that the applied halftoning method can be deter-
mined from the halftone images, and we are able to design dif-
ferent reconstruction filters for different halftone methods.

The objective of inverse halftone reconstruction is to convert
halftoned bilevel images into gray-level images with the min-
imum distortion. The performance of halftone reconstruction
is measured by PSNR, i.e., the peak signal power to the mean
squared error (MSE) between the original gray-level and the
reconstructed gray-level images. There exist several inverse
halftoning techniques, including iterative projection [5]–[9],
neural network [10], vector quantization [11], table lookup
[3], wavelet [12], linear and/or nonlinear filtering [13]–[17],
and MAP estimation [18], [19]. Most of these techniques
yield good reconstruction image quality but need iterative
computations, which require relatively high computational
complexity. Therefore, we focus on the development of inverse
halftoning techniques with excellent performance and afford-
able complexity for practical use.

Normally, the reconstruction process is a sliding window fil-
tering process. The major parameters are the filter order, i.e.,
the number of pixels used, the filter shape, i.e. the mask, and
the filter coefficients, i.e., weights. It is not obvious to design
optimal reconstruction filters for various halftone techniques.
In this situation, the adaptive filtering which adjusts the weights
based on the statistics of the original gray-level image and the
filter output image is a very good approach [20]. We choose
the LMS algorithm for its low complexity and excellent perfor-
mance. Kimet al., applied the LMS algorithm to binary permu-
tation filters for inverse halftoning [6]. Chen and Hang used the
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Fig. 2. Variations of the LMS filter mask shapes and the PSNR values (dB) of the reconstructed imageLena: (a) clustered-dot ordered dither, (b) dispersed-dot
ordered dither, and (c) error diffusion.

Fig. 3. Coefficients of the 16-point and 13-point filters designed by the LMS method: (a) clustered-dot ordered dither, (b) dispersed-dot ordered dither, and (c)
error diffusion.

LMS to design filters with the default square shape and devel-
oped an adaptive postprocessing algorithm [21]. In this work,
we do not assume a default filter mask shape at the beginning.
Instead, we apply the LMS algorithm to determine optimal mask
shapes and weights for various halftone techniques.

Practically, the inverse halftoning reconstruction filters can be
implemented by table lookup with reasonably large table sizes

since the input images are bilevel. One way to build the table
is to use the results designed by the LMS algorithm since it is
optimalprovided that the input imagesarestationaryandergodic.
However, theLMSalgorithmmaytrackto the localstatistics if the
training imageset isnotsufficiently largeor theupdatingstepsize
is not carefully tuned. Therefore, we present a different approach
to the design of reconstruction tables. The halftoning and inverse
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Fig. 4. Halftone patterns and the corresponding histograms of the grey-level distribution for the central pixel in clustered-dot ordered dither: (a) 9-point mask,
(b) 13-point mask, and (c) 13-point mask.

halftoning processes can be interpreted as the encoding and de-
codingprocessesofvectorquantization.Therefore, thecodebook
design methods can be applied to build the inverse halftoning
lookuptables[22].Thecontentofatableentryisthecentroidofthe
inputsamplesthataremappedtothisentry.Theresultsareoptimal
inthesenseofminimizingtheMSEforagivenhalftonemethod.

Although the MMSE table lookup method has the advan-
tages of good reconstructed quality and fast speed, it faces the
empty cellproblem in which no or very few training samples
are mapped to a specific halftone pattern. Hence, we propose
a hybrid scheme that combines the above two methods. Nor-
mally, the MMSE table lookup method is the first choice. The
LMS method is used if an empty cell is encountered in the table
lookup process. Consequently, this hybrid method yields the
best performance.

This paper is organized as follows. In Section II we describe
the inverse halftone reconstruction by LMS adaptive filtering
technique. The inverse halftone reconstruction by the MMSE
table lookup method is presented in Section III. The hybrid
LMS-MMSE algorithm is proposed in Section IV. Finally, con-
clusions are given in Section V.

II. I NVERSEHALFTONING BY LMS ADAPTIVE FILTERING

A. Adaptation Algorithm

An adaptive filter is basically a self-adjustable digital filter
that includes two major parts, the filter itself, and the adaptive

algorithm used to adjust the filter weights [20]. In this work, the
inverse halftoning filter is designed by the adaptive algorithm.
The whole process includes two phases, training and on-line
reconstruction. The weight adaptation is only applied to the
training in which both the original and the halftone images are
available.

The structure of the training process for inverse halftone re-
construction is shown in Fig. 1. The reconstructed image is gen-
erated by a sliding linear filter over the binary image, as com-
puted by

(1)

where
reconstructed gray-level pixel located at

;
filter weight;
filter mask which is a set of pixels centered
around ;
bilevel halftoned pixel at the location

.
The goal of the filter adaptation is toward to the minimization

of the MSE. The reconstruction error is defined as the
difference between the original gray-level pixel and the
reconstructed gray-level pixel , i.e.,

(2)
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TABLE I
PSNR (dB)OF THE RECONSTRUCTEDIMAGES WITH VARIOUS MASK SIZES

AND HALFTONE METHODS

TABLE II
NUMBER OF NONEMPTY CELLS AND EMPTY CELL FETCHES(IN

PARENTHESES) OF THE MMSE METHOD WITH VARIOUS TABLE SIZES

AND HALFTONE METHODS

The initial filter mask is a square with the size of . In the
experiments, however, the shape of the mask is not constrained
to be square only, i.e., any shape is allowed. We use the LMS
algorithm to perform the weight adaptation

all (3)

Fig. 5. Flowchart of the hybrid LMS-MMSE inverse halftoning method.

Fig. 6. Original grey-level imageLena.

where is the iteration index and is a parameter of updating
step size that controls the stability and the rate of convergence.
This iterative procedure terminates when the MSE decrease is
negligible.

B. Optimal Mask Shapes

In our experiments, 20 images with the size of are
used to train the reconstruction filter. The threshold matrices of
ordered dither for the clustered-dot and dispersed-dot are
“Classical-4” and “Bayer-5,” respectively [1]. The error diffu-
sion uses a 12-order diffusion filter [2]. The imageLenais used
to test the reconstruction filter. We start from a square mask
to reconstruct the gray-level pixel value of the central point.
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Fig. 7. Inverse halftonedLena images from clustered-dot ordered dither: (a)
7�7Gaussian filter,� = 1:5 (19.26 dB) and (b) 21-point hybrid LMS-MMSE
method (26.96 dB).

Then we eliminate the least significant weight that has the least
absolute value and observe the mask shape as well as the varia-
tion of PSNR. The results for above three halftone methods are
shown in Fig. 2. The pixels with light shade represent the shape
of the mask. The pixel with a dark shade or “X” represents the
center of the original mask, i.e., the pixel that the reconstructed
value obtained from the filter output is placed. The center of the
original mask does not necessarily exist in smaller masks. In

this case, the center is marked by “X.” The coefficients of the
16-point and 13-point filters for above three halftone methods
are also listed in Fig. 3.

For clustered-dot ordered dither, the four corners of the mask
are the first ones to be dropped. With 25 weights left, the mask
shape is like a diamond and the PSNR is only 0.8 dB infe-
rior to the 49-weight filter. With only 16 weights left, the mask
boundary is still diamond, but some pixels including the central
point in the diamond are dropped, and the filter mask becomes
noncontiguous. From this observation, we learn that the signifi-
cance of the filter weight is not necessarily inverse proportional
to the distance to the mask center.

For dispersed-dot ordered dither, the four corners are still
the first ones to be dropped. However, the mask is always con-
tiguous no matter how low the filter order is. The PSNR is about
2 dB higher than that of clustered-dot at the same order. It is
very interesting to notice that with limited order the optimal
inverse halftoning mask for the clustered-dot is not clustered
but dispersed, and vice versa. This conclusion seems not intu-
itive. However, a counter example may explain it. If we use a
dispersed inverse halftoning mask for a dispersed-dot halftone
image, then we may not get a smooth gray-level image. Instead,
we get a near black value at one pixel and a near white value
at next pixel. Hence, this should not be the optimal mask. Sim-
ilarly, a clustered type inverse mask should not be the optimal
mask for the clustered-dot halftoning.

For error diffusion halftone, bottom weights are generally
dropped out earlier than top weights. When the order drops to
nine, all surviving weights are on left and top sides only. This
can be explained by the error diffusion halftoning process be-
cause errors are diffused to the right and bottom of the current
pixel. Consequently, high correlation exists from top and left
pixels in the error diffused halftone image. The PSNR is about
4 dB higher than that of dispersed-dot at the same order when
the order is larger than 16 and the difference decreases when the
order reduces. The optimal mask shapes obtained from the LMS
algorithm will be applied to other inverse halftoning techniques
in the rest of this paper.

III. MMSE TABLE LOOKUP INVERSEHALFTONING

In this section, we present an optimal inverse halftoning
method that minimizes the MSE between the reconstructed
gray-level image and the original image. This minimum MSE
(MMSE) method has an additional advantage that it is suitable
for being implemented by table lookup. Thus, the computa-
tional complexity is greatly reduced.

A. Algorithm

For a given mask with dimension , the halftoning and in-
verse halftoning functions can be represented as the encoder
and the decoder, respectively, of a sliding vector quantizer by
ignoring the interblock correlation (or the sequential nature)
of halftoning. The encoder maps a gray-level image to a bi-
nary halftoned image, i.e., it maps an-dimensional Euclidean
space to an -dimensional binary space with up to the max-
imum number of codewords. From the vector quantization
theory [22], the nearest neighboring mapping is optimal in the
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Fig. 8. Inverse halftonedLenaimages from dispersed-dot ordered dither: (a)
7�7Gaussian filter,� = 1:5 (28.30 dB) and (b) 21-point hybrid LMS-MMSE
method (28.20 dB).

sense of minimizing a distortion measure, such as the squared
error. Any existing halftoning technique has its own mapping,
which may be far from the optimal mapping. However, in this
paper we only focus on the optimal inverse halftoning for the
existing halftone methods.

The decoder maps anN-dimensional binary pattern to a
one-dimensional Euclidean space. Specifically, it maps a bilevel

block to a gray-level pixel that represents the reconstructed
value of the central pixel in the mask. The optimal decoder for
a given encoder is described by the centroid theorem [22] as
follows.

Centroid Theorem:Given a nondegenerate partition ,
the unique optimal codebook for a random variable with
respect to the mean square error is given by

(4)

where
set of the original gray-level pixels that are mapped to
the th binary halftone pattern;
original gray-level pixel;
reconstructed gray-level pixel value with respect to the
halftone pattern.

In other words, the optimal inverse halftone codeword is the ex-
pected value of input pixels which are mapped to this codeword.

Because each halftone pattern is bilevel, there only exist at
most halftone patterns for an -dimensional mask. Thus,
the inverse halftoning process is suitable for table lookup im-
plementation due to the limited table size. The algorithm for the
construction of the lookup table is described as follows.

Step 1—Encoding Mapping:Encode the gray-level images
by a given halftone method. For a given-point mask, keep
tracking of the gray-level value of the central point in a mask and
its corresponding halftone pattern. Record the histogram ,
i.e., the number of occurrences of the gray-level valuea for each
halftone pattern.

Step 2—Centroid Calculation:For each halftone pattern,
calculate the centroid of the central point of a mask. The
centroid is calculated as the sample average

(5)

Step 3—Table Setup:Fill in the centroids into a table with
entries. This is the inverse halftoning reconstruction table. The
reconstruction tables must be designed separately for different
halftone methods for good performance.

B. Experiments

The same sets of training and test images as in the last
section are used in these experiments. The mask size affects
the reproduction quality significantly. Fig. 4 illustrates an
example. Fig. 4(a) first shows a nine-point halftone pattern and
its corresponding histogram of gray-level pixel values for the
clustered-dot ordered dither. The distribution of the gray-level
values spreads over a wide range. It is obviously impossible
to select a reconstruction value that can represent all the cases
exactly. However, the patterns of the 13-point mask in Fig. 4(b)
and (c) have much more concentrated distributions although
they are classified as the same pattern with the nine-point mask.
In general, large mask sizes are definitely able to generate good
reproduction. The table size is, unfortunately, exponentially
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Fig. 9. Inverse halftonedLenaimages from error diffusion: (a)7�7Gaussian
filter, � = 1:5 (30.41 dB) and (b) 21-point hybrid LMS-MMSE method (31.64
dB).

proportional to the mask size. For practical concerns, we use
mask sizes no more than 21 points in experiments.

In addition to the mask size, the shape of the mask also af-
fects the reproduction quality significantly. The optimal mask
shapes developed by the LMS algorithm in the last section are
applied. Three images (Lena, Peppers, andLake) are used to
evaluate the MMSE algorithm. Table I shows the reconstruction

TABLE III
COMPARISONS OFVARIOUS INVERSE HALFTONING METHODS

FOR THEFLOYD–STEINBERG ERRORDIFFUSION KERNEL (IMAGE SIZE:
N � N PIXELS, N = 512 HERE)

quality, represented by PSNR, of the test images. The “LMS”
and the “MMSE” columns represent the PSNR values of the
LMS adaptive algorithm and the MMSE table lookup algorithm,
respectively. The “Gaussian” and “LMS-S” columns also show
the PSNR values reconstructed by the Gaussian and LMS square
filters, respectively, for comparisons. In most cases, the MMSE
method further improves the reconstruction quality for a given
mask, which is generated from the LMS method. Particularly,
the improvement for the clustered-dot ordered dither is signif-
icant. Among the three halftoning methods, the error diffusion
still provides the best reconstruction quality.

Intuitively, the MMSE method should generate better recon-
struction quality because it starts from the resultant optimal
masks of the LMS method and in addition performs optimal
mapping. However, the performance of the MMSE method is
not necessarily better than the LMS method in all experiments.
This seems to contradict the optimal decoding theorem of the
vector quantization. In further investigation, we observe that the
empty cellproblem is serious in this table lookup implementa-
tion, particularly for the cases of large table sizes. An empty cell
is defined as the halftone pattern or the table entry in which the
number of input training samples mapping to it is less than or
equal to a threshold. It happens when the training set is not suf-
ficiently large or the halftone patterns generated by a halftone
method only form a subset of binary space.

Table II shows the number of nonempty cells with the empty
cell threshold set to zero in the training phase and the number
of empty cell fetches, which represents the number of halftone
patterns mapping to empty cells in the test phase. A larger set
of training images should reduce the number of empty cells.
Nevertheless, some halftone techniques, such as the ordered
dithering methods, tend to use only a small subset of all pos-
sible patterns. This may explain why ordered dithering does not
generate the best quality among all halftone methods. However,
the limited use of the coding space has an advantage that only
small table size is required if a proper hashing function is ap-
plied. On the other hand, the error diffusion technique tends to
use as many patterns as possible. Hence, it has the potential to
generate the best reconstruction quality.

In summary, the MMSE inverse halftoning technique has the
optimal performance for a given mask and a halftone method
provided that no empty cell fetches exist. This method is suitable
for table lookup implementation. Intuitively, a sufficiently large
set of training images can eliminate the empty cell problem. Un-
fortunately, due to the specific patterns of threshold matrices
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or diffusion filters in these halftone methods, the empty cell
problem still exists even with a relatively large set of training
images. Therefore, we use the hybrid method as described in
the next section to solve this problem.

IV. HYBRID LMS-MMSE INVERSEHALFTONING

A. Algorithm

We propose a hybrid inverse halftoning method that combines
the LMS and the MMSE table lookup methods. The flowchart
of this hybrid inverse halftoning method is shown in Fig. 5. The
MMSE inverse halftoning method with the table lookup imple-
mentation has the advantages of good performance and fast pro-
cessing speed. However, the empty cell problem degrades the
performance. On the other hand, the LMS method never has this
problem. Thus, the MMSE method is applied whenever the table
entry is valid, and the LMS method is used as a complement to
the MMSE method. Namely, for those halftone patterns with no
corresponding table entries, the reconstructed gray-level value
is determined by the filter that is designed by the LMS adaptive
algorithm. The complete design procedure of the hybrid method
is described as follows:

1) determine the maximum order of the LMS adaptive filter:
;

2) determine the maximum order of the MMSE method:;
3) determine the optimal mask shapes by running the LMS

adaptive filtering from points to points by dropping
points with the smallest weights;

4) build up the reconstruction table by running the-point
MMSE design algorithm;

5) determine the empty cell threshold:;
6) replace the empty cell table entry by the output of the

-point LMS adaptive filter for the same halftone pat-
tern.

B. Experiments

The same test images as in the previous sections are used
in the experiments. The experiment results are also shown in
Table I. The “hybrid” columns represent the PSNR values of
the hybrid LMS-MMSE algorithm. The numbers in bold face
are the best values among all five inverse halftoning methods.
In all cases, the hybrid method is superior or equal to any of
the LMS or MMSE methods. The empty cell thresholdin the
hybrid method is chosen to be 20 here. The value ofaffects
the percentage that the MMSE method is used. The higher the

is, the less likely the MMSE method is chosen. Although
the MMSE method is optimal theoretically, a cell with very few
samples may not provide good representation. Thus, the MMSE
method with a small is not necessarily the best choice.

Fig. 6 shows the original gray-level test image ofLena. The
photos of the reconstructed images by the Gaussian low-pass
filter and the hybrid LMS-MMSE inverse halftoning method
for three halftone techniques are demonstrated in Figs. 7–9. In
particular, the proposed method has significant improvements
over the Gaussian filter for the clustered-dot ordered dither and
the error diffusion halftones. The hybrid LMS-MMSE approach
reconstructed from the error diffused halftone still results in the
best image quality, both objectively and subjectively.

Finally, we compare the image quality, memory usage, and
computational complexity of the proposed hybrid method with
various existing inverse halftoning methods for the Floyd–Stein-
berg error diffusion kernel [1]. The results are shown in Table III
in which the memory usage and computational complexity of
the existing methods are quoted from [16] and [17]. We ob-
serve that the 21-point hybrid LMS-MMSE method yields the
comparable PSNR performance to the best results in all ex-
isting approaches. The computational complexity of the pro-
posed method is extremely low in which only table lookup op-
erations are involved. Although the memory usage is relatively
high, it will not further grow up with the increase of the image
size like all the other methods.

V. CONCLUSION

We have presented the hybrid LMS-MMSE inverse
halftoning method. The LMS adaptive algorithm is an efficient
tool to discover the optimal filter masks. We obtain optimal
filter masks for the three most commonly used halftone tech-
niques. Based on these mask shapes, the MMSE table lookup
method further improves the reconstruction performance and
reduces the computational complexity. Finally, the hybrid
method, which solves the empty cell problem, provides the
best performance with a high processing speed. In particular,
the proposed method is developed for existing halftoning
techniques. The overall performance may be further improved
if both the halftoning and inverse halftoning processes are
optimized for each other.
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