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Hybrid LMS-MMSE Inverse Halftoning Technique

Pao-Chi Chang, Che-Sheng Yu, and Tien-Hsu Lee

Abstract—The objective of this work is to reconstruct high vk )
quality gray-level images from bilevel halftone images. We develop | Graydevel »  Halfione —»  LMS Adaptive » Reconstructed
optimal inverse halftoning methods for several commonly used Image Processing biipy ilter Image

halftone techniques, which include dispersed-dot ordered dither,
clustered-dot ordered dither, and error diffusion. At first, the A
least-mean-square (LMS) adaptive filtering algorithm is applied in g(ij) + N gy
the training of inverse halftone filters. The resultant optimal mask

shapes are significantly different for various halftone techniques, Frig 1. Block diagram of the LMS adaptive filtering algorithm in the training
and these mask shapes are also quite different from the square of inverse halftone reconstruction.

shape that was frequently used in the literature. In the next step,

we further reduce the computational complexity by using lookup

tables designed by the minimum mean square error (MMSE) persed-dot ordered dither, clustered-dot ordered dither, and error
method. The optimal masks obtained from the LMS method are ity sion [1]. We consider a general inverse halftoning process

used as the default filter masks. Finally, we propose the hybrid . e .
LMS-MMSE inverse halftone algorithm. It normally uses the that includes two parts, the classification and the reconstruction.

MMSE table lookup method for its fast speed. When an empty cell Halftone classification is the pre-processing of reconstruction.
is referred, the LMS method is used to reconstruct the gray-level Different halftone techniques result in very different statistical
value. Consequently, the hybrid method has the advantages properties. A successful classification can allow a distinct de-
g(pbeorm::tge”tigt éfr‘gornggf‘a‘;%‘:] 3?’;"32’ tﬁgdb]:aistt rseréﬁiginljgtitc?rf sign of reconstruction filters with respect to each halftone tech-
quality amon’g all three halftone techniques. nique, consequently yield bef[t_er r_econstruc_:tlon ql_Jallty. We have
S _ _ previously presented a classification technique with back propa-
ﬁlt'er;d&XJEE”}ZEETSLESLUSAS&'rg‘ée(;istﬁgﬁ‘r'{;o”'”g' LMS adaptive  gation neural networks based on the enhanced one- dimensional
' ' ' correlation of halftone images [4]. It can correctly classify sev-
eral most widely used halftoning techniques. Thus in this paper,
|. INTRODUCTION we assume that the applied halftoning method can be deter-
ALFTONE techniques, which convert gray-level im_mined from the hglﬁoqe images: and we are able to design dif-
fgrent reconstruction filters for different halftone methods.

ages into bilevel images, have been widely applie o . S
to the printing of newspapers, magazines, books, as well aThe objective of inverse halftone reconstruction is to convert

fax machines and printers [1], [2]. The inverse halftonin as1ftoned bilevel images into gray-level images with the min-
processes, i.e., the reconstruction of gray-level images froi™ distortion. The performance of halftone reconstruction

bilevel halftoned images, also get increasing attention. Thsemeasured by PSNR, i.e., the peak _slgnal power to the mean
%%uared error (MSE) between the original gray-level and the

reconstruction process is necessary in at least two situatio > onstructed arav-level imaaes. There exist several inverse
The first is when the output device is capable of showing col i tructed gray-ieve ges.. e exist seve ©
alftoning techniques, including iterative projection [5]-[9],

or gray-level images, such as the computer display, a careful o
reconstructed continuous-tone image should deliver bet g[ural network [19]’ vector quant|;at|on [11].’ table lookup
, wavelet [12], linear and/or nonlinear filtering [13]-[17],

quality than a halftone image for an original continuous-to S .
image. The second is when an image processing techniqug.r? MAP estimation [18], [19]. Most of these techniques

applied to a halftone image, it will be more accurate to proc @r: Sto%dnrecsvr;]sitrrllj C:'OH i:margjciagyalllltyhiblrj]t nerid :[etriatr:v?
it in the original continuous-tone domain [3]. Moreoverc0mPUtations, ch require refatively high computationa

halftoning is basically a lossy process. It is impossible to gggmglr?):ty.t;—chher:‘efo;’ W?hfzcizﬁgn'[thee(:?:ﬂ]c;%r?:n;nog '2;5:3?
a perfect reconstruction without distortion from a halfton ng lques with ex P

image. Nevertheless, it is interesting to know how close ti?gll\f comlrl)lei(;]ty for pra;:nce;l use. . lidi indow fil
reconstruction quality can be to the original image. ormatly, the reconstruction process is a siiding windowfil-

In this work, we discuss inverse halftoning techniques for t)‘l fing prgces?. Thel map; p{{?‘raﬂftershare the f|tl;[1er ordekr, "ea’
three most widely used halftone techniques, which include d & humber of pixeis Used, e TIer shape, 1.€. tne mask, an

e(ij)

the filter coefficients, i.e., weights. It is not obvious to design
optimal reconstruction filters for various halftone techniques.
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Fig. 2. Variations of the LMS filter mask shapes and the PSNR values (dB) of the reconstructed-anag@) clustered-dot ordered dither, (b) dispersed-dot
ordered dither, and (c) error diffusion.
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Fig. 3. Coefficients of the 16-point and 13-point filters designed by the LMS method: (a) clustered-dot ordered dither, (b) dispersed-dottbedeaad )
error diffusion.

LMS to design filters with the default square shape and devsince the input images are bilevel. One way to build the table
oped an adaptive postprocessing algorithm [21]. In this woris, to use the results designed by the LMS algorithm since it is
we do not assume a default filter mask shape at the beginniogtimal provided thatthe inputimages are stationary and ergodic.
Instead, we apply the LMS algorithm to determine optimal masgkowever, the LMS algorithm may trackto the local statistics if the
shapes and weights for various halftone techniques. trainingimage setis not sufficiently large or the updating step size
Practically, the inverse halftoning reconstruction filters can benot carefully tuned. Therefore, we present a different approach
implemented by table lookup with reasonably large table sizsthe design of reconstruction tables. The halftoning and inverse
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Fig. 4. Halftone patterns and the corresponding histograms of the grey-level distribution for the central pixel in clustered-dot orderejl @gimént (aask,
(b) 13-point mask, and (c) 13-point mask.

halftoning processes can be interpreted as the encoding andadgerithm used to adjust the filter weights [20]. In this work, the
coding processes of vector quantization. Therefore, the codebaolerse halftoning filter is designed by the adaptive algorithm.
design methods can be applied to build the inverse halftoniige whole process includes two phases, training and on-line
lookuptables[22]. The contentofatable entryisthe centroid of theconstruction. The weight adaptation is only applied to the
inputsamplesthatare mappedtothisentry. Theresultsare optitnaining in which both the original and the halftone images are
inthe sense of minimizing the MSE for agiven halftone method. available.

Although the MMSE table lookup method has the advan- The structure of the training process for inverse halftone re-
tages of good reconstructed quality and fast speed, it faces tlo@struction is shown in Fig. 1. The reconstructed image is gen-
empty cellproblem in which no or very few training sampleserated by a sliding linear filter over the binary image, as com-
are mapped to a specific halftone pattern. Hence, we propgaged by
a hybrid scheme that combines the above two methods. Nor-

mally, the MMSE table lookup method is the first choice. The 9(i, i)y= > wlk, Dbli—k, j—1) 1)
LMS method is used if an empty cell is encountered in the table (k, )M
lookup process. Consequently, this hybrid method yields thg,ere
best performance. . 0% reconstructed gray-level pixel located at
This paper is organized as follows. In Section Il we describe (i, 5);
the inverse halftone reconstruction by LMS adaptive filtering w(k, 1) filter weight;
technique. The inverse halftone reconstruction by the MMSE ;, filter mask which is a set of pixels centered
table lookup method is presented in Section Ill. The hybrid around(i, 5);
LMS-MMSE algorithm is proposed in Section IV. Finally, con- b(i—k, j— 1) bilevel halftoned pixel at the locatiofi —
clusions are given in Section V. ) k,j— ).
The goal of the filter adaptation is toward to the minimization
[I. INVERSEHALFTONING BY LMS ADAPTIVE FILTERING of the MSE. The reconstruction errefi, j) is defined as the

. . iff he original -level pixet, j h
A. Adaptation Algorithm difference between t eorl.glnﬁabgr'ay_ evel pixét, j) and the
reconstructed gray-level pixel (¢, j), i.e.,
An adaptive filter is basically a self-adjustable digital filter _
that includes two major parts, the filter itself, and the adaptive e(t, 1) =g(i, j) — 9(4, J). 2
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TABLE |
PSNR (dB)oF THE RECONSTRUCTEDIMAGES WITH VARIOUS MASK SIZES
AND HALFTONE METHODS

Mask Size
Image Method 9 13 16 21 25 49
Gaussian - - - - 13.39 19.26
LMS-S 1331 - - - 2244 | 2696
Clustered-dot LMS 20.93 23.67 25.39 25.82 26.16 | 26.96
MMSE 22.41 25.31 26.14 23.96 - -
Hybrid 22.41 25.31 26.14 | 26.96 - -
Gaussi - - - - 26.44 28.30
LMS-§ 23.69 - - - 28.15 28.31
Lena | Dispersed-dot LMS 2481 26.15 27.04 27.85 28.17 2831
MMSE 2491 26.43 27.26 | 28.13 - -
Hybrid 24.91 26.44 | 27.27 | 2820 - -
Gaussian - - - - 26.82 3041
LMS-S 24.36 - - - 31.40 32.39
Error Diffusion LMS 24.61 28.21 30.03 31.59 | 32.16 32.39
MMSE 24.90 28.48 30.36 27.90 - -
Hybrid 24.90 2848 | 30.39 | 31.64 - -
Gaussian - - - - 13.64 19.52
LMS-S 13.50 - - - 22.53 27.26
Clustered-dot LMS 20.82 23.66 2541 2594 2634 | 27.26
MMSE 2222 2529 | 26.19 | 26.86 - -
Hybrid 22.22 2530 | 26.21 26.89 - -
G i - - - - 2639 | 2847
LMS-S 23.53 - - - 28.20 28.48
Peppers | Dispersed-dot LMS 24.91 26.25 27.07 27.92 28.27 28.48
MMSE 25.21 26.59 27.35 28.04 - -
Hybrid 2521 26.60 27.39 | 28.26 - -
Gaussian - - - - 26.51 29.91
LMS-S 24.37 - - - 30.80 31.65
Error Diffusion LMS 24.75 27.91 29.54 30.95 31.46 31.65
MMSE 25.11 28.39 30.09 | 28.00 - -
Hybrid 25.11 28.39 | 30.13 | 31.23 - -
Gaussian - - - - 14.22 19.64
LMS-S 14.10 - - - 21.27 | 2449
Clustered-dot LMS 19.76 22.41 2357 23.82 24.02 24.49
MMSE 21.02 23.23 2394 | 24.46 - -
Hybrid 21.02 2324 | 2394 | 2446 - -
Gaussian - - - - 2499 25.71
LMS-S 22.76 - - - 2586 | 25.93
Lake | Dispersed-dot LMS 23.72 24.71 2530 2578 | 2587 25.93
MMSE 23.72 24.89 | 2544 | 2593 - -
Hybrid 23.72 24.89 | 2545 | 2596 - -
Gaussian - - - - 24.96 26.53
LMS-S 23.12 - - - 2924 | 2990
Error Diffusion LMS 24.08 27.31 2849 | 2943 29.76 | 29.90
MMSE 24.30 27.42 28.54 24.38 - -
Hybrid 24.30 27.42 28.68 | 29.31 - -
7x7 Gaussian low-pass filter, ¢=1.5
5x5 Gaussian low-pass filter, ¢=1.0
TABLE 1

NUMBER OF NONEMPTY CELLS AND EMPTY CELL FETCHES(IN
PARENTHESE9 OF THE MMSE METHOD WITH VARIOUS TABLE SIZES
AND HALFTONE METHODS

Image | o Table Size | 50515 29=8192 | 2=65536 | 2%'=2007152
Clustered-dot 500(0) | 3307(118) | 9064(358) | 26532(603)
Lena Dispersed-dot 286(22) | 1494(119) | 3910(242) | 14225(577)
Error Diffusion 512(0) 8174(2) | 60280(162) |635739(11610)
Clustered-dot 500(1) | 3307(153) | 9064(504) | 26532(864)
Peppers | Dispersed-dot 286(30) | 1494(176) | 3910(365) | 14225(922)
Error Diffusion 512(0) 8174(3) | 60280(195) |635739(10921)
Clustered-dot 5002) | 3307(231) | 9064(684) | 26532(1457)
Lake Dispersed-dot 286(30) | 1494(150) | 3910(320) | 14225(891)
Error Diffusion 512(0) 8174(9) | 60280(718) |635739(25173)

The initial filter mask is a square with the sizelok L. In the
experiments, however, the shape of the mask is not constraine
to be square only, i.e., any shape is allowed. We use the L

algorithm to perform the weight adaptation

W1 (ky D) =wan (b, D) 4+ 2ue(i — k, = Dbi — k, = 1)
all (k, ) e M

®)

M3®
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Fig. 5. Flowchart of the hybrid LMS-MMSE inverse halftoning method.

Fig. 6. Original grey-level imagkena

wherem is the iteration index and is a parameter of updating
step size that controls the stability and the rate of convergence.
This iterative procedure terminates when the MSE decrease is
negligible.

B. Optimal Mask Shapes

H1 our experiments, 20 images with the size&d2 x 512 are

d to train the reconstruction filter. The threshold matrices of
ordered dither for the clustered-dot and dispersed-dat ar&
“Classical-4" and “Bayer-5,” respectively [1]. The error diffu-
sion uses a 12-order diffusion filter [2]. The imagenais used

to test the reconstruction filter. We start frorfi:a7 square mask

to reconstruct the gray-level pixel value of the central point.
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this case, the center is marked by “X.” The coefficients of the
16-point and 13-point filters for above three halftone methods
are also listed in Fig. 3.

For clustered-dot ordered dither, the four corners of the mask
are the first ones to be dropped. With 25 weights left, the mask
shape is like a diamond and the PSNR is only 0.8 dB infe-
rior to the 49-weight filter. With only 16 weights left, the mask
boundary is still diamond, but some pixels including the central
point in the diamond are dropped, and the filter mask becomes
noncontiguous. From this observation, we learn that the signifi-
cance of the filter weight is not necessarily inverse proportional
to the distance to the mask center.

For dispersed-dot ordered dither, the four corners are still
the first ones to be dropped. However, the mask is always con-
tiguous no matter how low the filter order is. The PSNR is about
2 dB higher than that of clustered-dot at the same order. It is
very interesting to notice that with limited order the optimal
inverse halftoning mask for the clustered-dot is not clustered
but dispersed, and vice versa. This conclusion seems not intu-
itive. However, a counter example may explain it. If we use a
dispersed inverse halftoning mask for a dispersed-dot halftone
image, then we may not get a smooth gray-level image. Instead,
we get a near black value at one pixel and a near white value
at next pixel. Hence, this should not be the optimal mask. Sim-
ilarly, a clustered type inverse mask should not be the optimal
mask for the clustered-dot halftoning.

For error diffusion halftone, bottom weights are generally
dropped out earlier than top weights. When the order drops to
nine, all surviving weights are on left and top sides only. This
can be explained by the error diffusion halftoning process be-
cause errors are diffused to the right and bottom of the current
pixel. Consequently, high correlation exists from top and left
pixels in the error diffused halftone image. The PSNR is about
4 dB higher than that of dispersed-dot at the same order when
the order is larger than 16 and the difference decreases when the
order reduces. The optimal mask shapes obtained from the LMS
algorithm will be applied to other inverse halftoning techniques
in the rest of this paper.

I1l. MMSE TABLE LOOKUP INVERSEHALFTONING

In this section, we present an optimal inverse halftoning
method that minimizes the MSE between the reconstructed
gray-level image and the original image. This minimum MSE
(MMSE) method has an additional advantage that it is suitable

(b} for being implemented by table lookup. Thus, the computa-

tional complexity is greatly reduced.
Fig. 7. Inverse halftonetlenaimages from clustered-dot ordered dither: (a)
7 x 7 Gaussian filterg = 1.5 (19.26 dB) and (b) 21-point hybrid LMS-MMSE .
method (26.96 dB). A. Algorithm
For a given mask with dimensiaN, the halftoning and in-

Then we eliminate the least significant weight that has the leastrse halftoning functions can be represented as the encoder
absolute value and observe the mask shape as well as the vaia the decoder, respectively, of a sliding vector quantizer by
tion of PSNR. The results for above three halftone methods ageoring the interblock correlation (or the sequential nature)
shown in Fig. 2. The pixels with light shade represent the shapkhalftoning. The encoder maps a gray-level image to a bi-
of the mask. The pixel with a dark shade or “X” represents theary halftoned image, i.e., it maps ahdimensional Euclidean
center of the original mask, i.e., the pixel that the reconstructedace to anV-dimensional binary space with up to the max-
value obtained from the filter output is placed. The center of tiium number o2 codewords. From the vector quantization
original mask does not necessarily exist in smaller masks. threory [22], the nearest neighboring mapping is optimal in the
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block to a gray-level pixel that represents the reconstructed
value of the central pixel in the mask. The optimal decoder for
a given encoder is described by the centroid theorem [22] as
follows.

Centroid Theorem:Given a nondegenerate partitig®; },
the unique optimal codebodk; } for a random variablé& with
respect to the mean square error is given by

Y; = E[X|X € R] 4)

R, setof the original gray-level pixels that are mapped to

theith binary halftone pattern;

X  original gray-level pixel;

Y;  reconstructed gray-level pixel value with respect to the

halftone pattern.
In other words, the optimal inverse halftone codeword is the ex-
pected value of input pixels which are mapped to this codeword.

Because each halftone pattern is bilevel, there only exist at
most2" halftone patterns for aiv-dimensional mask. Thus,
the inverse halftoning process is suitable for table lookup im-
plementation due to the limited table size. The algorithm for the
(&) construction of the lookup table is described as follows.

Step 1—Encoding MappingEncode the gray-level images
by a given halftone method. For a givév-point mask, keep
tracking of the gray-level value of the central pointin a mask and
its corresponding halftone pattern. Record the histodfgim),

i.e., the number of occurrences of the gray-level valt@ each
halftone pattern.

Step 2—Centroid CalculationFor each halftone patter
calculate the centroid; of the central point of a mask. The
centroid is calculated as the sample average

255

Za x T;(a)

=0
Y=

255

> Ti(a)

Step 3—Table SetugFill in the centroids into a table witk™
entries. This is the inverse halftoning reconstruction table. The
reconstruction tables must be designed separately for different
halftone methods for good performance.

B. Experiments

(b The same sets of training and test images as in the last
section are used in these experiments. The mask size affects
Fig. 8. Inverse halftonetienaimages from dispersed-dot ordered dither: (afhe reproduction quality significantly. Fig. 4 illustrates an
7x T Gaussian filterg = 1.5 (28.30 dB) and (b) 21-point hybrid LMS-MMSE example. Fig. 4(a) first shows a nine-point halftone pattern and
method (28.20 dB). . . . .
its corresponding histogram of gray-level pixel values for the
clustered-dot ordered dither. The distribution of the gray-level
sense of minimizing a distortion measure, such as the squavaetles spreads over a wide range. It is obviously impossible
error. Any existing halftoning technique has its own mappingg select a reconstruction value that can represent all the cases
which may be far from the optimal mapping. However, in thiexactly. However, the patterns of the 13-point mask in Fig. 4(b)
paper we only focus on the optimal inverse halftoning for thend (¢) have much more concentrated distributions although
existing halftone methods. they are classified as the same pattern with the nine-point mask.
The decoder maps aN-dimensional binary pattern to aln general, large mask sizes are definitely able to generate good
one-dimensional Euclidean space. Specifically, it maps a bileveproduction. The table size is, unfortunately, exponentially
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TABLE Il
COMPARISONS OFVARIOUS INVERSE HALFTONING METHODS
FOR THE FLOYD—STEINBERG ERROR DIFFUSION KERNEL (IMAGE SIZE:
N x N PixeLs, N = 512 HERE)

. ) Memory Usage | Computational PSNR (dB)
Algorithm [Reference] (Bytes) Complexity Tona Peppers
POCS [8] [ High 30.4 -
Bayesian [18] 8NV High - -
Wong [9] [ Medium 31.00 29.30
Wavelet [12] 36N Medium 31.50 30.43
Kite [17] TN Low 31.3 314
Damera-Venkata [16] 28N Very Low 31.51 31.17
16-point LMS-MMSE 2' Very Low 30.79 30.67
21-point LMS-MMSE 2% Very Low 31.39 31.22

quality, represented by PSNR, of the test images. The “LMS”
and the “MMSE” columns represent the PSNR values of the
LMS adaptive algorithm and the MMSE table lookup algorithm,
respectively. The “Gaussian” and “LMS-S” columns also show
the PSNR values reconstructed by the Gaussian and LMS square
filters, respectively, for comparisons. In most cases, the MMSE
method further improves the reconstruction quality for a given
mask, which is generated from the LMS method. Particularly,
the improvement for the clustered-dot ordered dither is signif-
icant. Among the three halftoning methods, the error diffusion
still provides the best reconstruction quality.

Intuitively, the MMSE method should generate better recon-
struction quality because it starts from the resultant optimal
masks of the LMS method and in addition performs optimal
mapping. However, the performance of the MMSE method is
not necessarily better than the LMS method in all experiments.
This seems to contradict the optimal decoding theorem of the
vector quantization. In further investigation, we observe that the
empty cellproblem is serious in this table lookup implementa-
tion, particularly for the cases of large table sizes. An empty cell
is defined as the halftone pattern or the table entry in which the
number of input training samples mapping to it is less than or
equal to a threshold. It happens when the training set is not suf-
ficiently large or the halftone patterns generated by a halftone
method only form a subset af¥ binary space.

Table 1l shows the number of nonempty cells with the empty
cell threshold set to zero in the training phase and the number
of empty cell fetches, which represents the number of halftone
patterns mapping to empty cells in the test phase. A larger set
of training images should reduce the number of empty cells.
Nevertheless, some halftone techniques, such as the ordered
dithering methods, tend to use only a small subset of all pos-
sible patterns. This may explain why ordered dithering does not
generate the best quality among all halftone methods. However,

Fig.9. Inverse halftonedenaimages from error diffusion: (&) x 7 Gaussian  the limited use of the coding space has an advantage that only

filter, ¢ = 1.5 (30.41 dB) and (b) 21-point hybrid LMS-MMSE method (31.64

dB).

small table size is required if a proper hashing function is ap-
plied. On the other hand, the error diffusion technique tends to
use as many patterns as possible. Hence, it has the potential to

proportional to the mask size. For practical concerns, we U§énerate the best reconstruction quality.

mask sizes no more than 21 points in experiments.

In summary, the MMSE inverse halftoning technique has the

In addition to the mask size, the shape of the mask also aptimal performance for a given mask and a halftone method
fects the reproduction quality significantly. The optimal masgrovided that no empty cell fetches exist. This method is suitable
shapes developed by the LMS algorithm in the last section dog table lookup implementation. Intuitively, a sufficiently large
applied. Three imaged.€na, PeppersandLake are used to set of training images can eliminate the empty cell problem. Un-
evaluate the MMSE algorithm. Table | shows the reconstructidortunately, due to the specific patterns of threshold matrices
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or diffusion filters in these halftone methods, the empty cell Finally, we compare the image quality, memory usage, and
problem still exists even with a relatively large set of trainingomputational complexity of the proposed hybrid method with
images. Therefore, we use the hybrid method as describedramious existing inverse halftoning methods for the Floyd—Stein-

the next section to solve this problem. berg error diffusion kernel [1]. The results are shown in Table l11
in which the memory usage and computational complexity of
IV. HYBRID LMS-MMSE INVERSEHALFTONING the existing methods are quoted from [16] and [17]. We ob-

A. Algorithm serve that the 21-point hybrid LMS-MMSE method yields the
' comparable PSNR performance to the best results in all ex-
We propose a hybrld inverse halftoning method that Combin%ﬁng approaches' The Computationa| Comp|exity of the pro-
the LMS and the MMSE table IOOkUp methods. The ﬂOWChaﬁosed method is extreme|y low in which on|y table |Ookup op-
of this hybrid inverse halftoning method is shown in Fig. 5. Thgrations are involved. Although the memory usage is relatively

MMSE inverse halftoning method with the table lookup implenigh, it will not further grow up with the increase of the image
mentation has the advantages of good performance and fast gfge like all the other methods.

cessing speed. However, the empty cell problem degrades the
performance. On the other hand, the LMS method never has this
problem. Thus, the MMSE method is applied whenever the table
entry is valid, and the LMS method is used as a complement toWe have presented the hybrid LMS-MMSE inverse
the MMSE method. Namely, for those halftone patterns with ritalftoning method. The LMS adaptive algorithm is an efficient
corresponding table entries, the reconstructed gray-level vatoel to discover the optimal filter masks. We obtain optimal

is determined by the filter that is designed by the LMS adaptifiéter masks for the three most commonly used halftone tech-
algorithm. The complete design procedure of the hybrid methoifjues. Based on these mask shapes, the MMSE table lookup

V. CONCLUSION

is described as follows: method further improves the reconstruction performance and
1) determine the maximum order of the LMS adaptive filtef€duces the computational complexity. Finally, the hybrid
N; method, which solves the empty cell problem, provides the

2) determine the maximum order of the MMSE methti; Pest performance with a high processing speed. In particular,

3) determine the optimal mask shapes by running the LMBe proposed method is developed for existing halftoning

adaptive filtering fromV points toM points by dropping techniques. The overall performance may be further improved
points with the smallest weights; if both the halftoning and inverse halftoning processes are

4) build up the reconstruction table by running thiepoint  OPtimized for each other.
MMSE design algorithm;
5) determine the empty cell thresholf;, ACKNOWLEDGMENT
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