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Abstract 
 

Foreground segmentation for video frames has 
played an important role in many video applications, 
such as video surveillance, video indexing, etc. Due to 
most videos are compressed, foreground segmentation 
can benefit from utilizing such coding information and 
save much processing time. In this paper, we propose a 
real-time foreground segmentation algorithm for the 
moving camera based on the H.264 video coding 
information. In the proposed algorithm, we first utilize 
the relative global motion model to calculate the 
approximate global motion vector and get the motion 
vector difference of each block. Then, according to the 
block partition modes, we assign different weightings 
and apply spatio-temporal refinement to these motion 
vector differences for further improving the accuracy 
of segmentation results. Finally, we segment out the 
foreground blocks by an adaptive threshold. With the 
aid of H.264 video coding information, the proposed 
segmentation algorithm is more practical than many 
other methods based on spatial domain information in 
computational complexity. 
 
 
1. Introduction 
 

Video data usually need to perform compression 
before storage or transmission. The H.264/AVC video 
coding standard [1], [2] has been developed to achieve 
significant improvements over the existing previous 
standards in the performance of compression efficiency. 
With the advance of semiconductor technology, 
various video applications, such as the video 
conferencing, video indexing, video surveillance, 
object tracking, and object-based video coding, also 
become much more feasible to be implemented in real-
time. In these applications, the foreground 
segmentation plays an important role among the 

complicated processing tasks. For example, in a multi-
video surveillance system, the camera with the large 
foreground area of video contents is supposed to 
contain significantly noticeable objects and deserve to 
obtain much more attention. The foreground 
segmentation results directly influence the entire 
system performance. Consequently, a fast and accurate 
foreground segmentation method is required. 

Foreground segmentation is usually achieved by 
segmenting the moving part (relative to the 
background) of video contents. The motion of video 
contents can be extracted by means of motion 
estimation, optical flow, or differences between 
frames, etc. Note that a moving part of a non-rigid 
object is not necessary to be the whole object. This is 
one of the problems need to be resolved. To segment 
the entire object out, the spatial information such as the 
contour should be employed additionally. 

Various foreground segmentation algorithms have 
been proposed for different purposes. According to [3], 
these algorithms can be grouped into three categories: 
the motion-based, change-based, and spatio-temporal 
segmentation. 

Motion-based segmentation techniques extract 
regions with homogeneous motion vectors (MVs) and 
achieve fast segmentation [4], [5]. These methods treat 
the video compression as a kind of pre-processing, as 
the video coding is inevitable in most of video 
applications. In this way, motion-based segmentation 
techniques can reduce the computational costs on 
obtaining the motion information. Furthermore, for the 
video captured from the moving camera, the motion of 
background can be approximated by exploring motion 
vectors, under the assumption that most blocks belong 
to the background. By subtracting the background 
motion from all motion vectors, we can treat the results 
as from a fixed camera. A block-based Markov random 
field (MRF) model for the motion vector field was 
proposed in [3]. 
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Figure 1. Block diagram of the proposed algorithm 
 
 

Change-based segmentation techniques extract 
moving objects by comparing successive frames or 
comparing frames with a background model [6], [7]. 
For video contents from a fixed camera with a static 
background, change-based segmentation methods are 
very efficient since their efforts are spent on the 
changed parts of frames only. On the other hand, for a 
moving camera, the inter-frame changes are plenty and 
lead to unacceptable results, unless the background 
model is established with the entire video sequence. In 
this case, the process needs to be done offline [8]. 

Spatio-temporal segmentation techniques utilize 
motion vectors to obtain a relatively coarser inter-
mediate result, while the spatial information guarantees 
that segmentation boundaries coincide with the object 
boundaries [9]-[11]. These properties benefit the 
applications such as the pattern recognition but require 
extra efforts compared to the motion-based algorithms. 

In H.264 video coding standard, in addition to 
motion vectors, there are seven block partition modes 
for the inter-frame coding. It is observed that small-
sized blocks tend to be the foreground, and vice versa. 
Therefore, our goal is to exploit such H.264 video 
coding information to achieve real-time foreground 
segmentation for the video captured from moving 
cameras. We choose the motion-based method, which 
achieves fast segmentation and favors real-time 
systems. In the next section, we will describe the 
proposed algorithm in detail. The simulation results are 
presented in Section 3. Section 4 concludes our works. 
 
2. The proposed foreground segmentation 
scheme 
 

Figure 1 is the block diagram of our proposed 
foreground segmentation algorithm for the moving 
camera based on the H.264 coding information. The 
coding information we exploit includes block partition 
modes and motion vectors. 

The processing blocks are composed of global 
motion estimation, mode weighting, spatio-temporal 
refinement, and adaptive thresholding, respectively. 
First, we choose proper MVs according to partition 
modes to perform the global motion estimation and 
subtract the obtained global motion from all MVs to 
offset the MVs caused by the camera movement. Then, 
we obtain intermediate results for moving foreground. 
After that, the intermediate results are enhanced by 

different weighting coefficients for various partition 
modes. We also perform spatial and temporal filtering 
to refine the results. Finally, an adaptive threshold is 
employed to segment out the resultant foreground. 
 
2.1. Global motion estimation 
 

There exist two prerequisites to the global motion 
estimation for the H.264 coded video here: 

1. For inter-frame global motion estimation, the 
number of reference frame is restricted to one in our 
algorithm. 

2. We take 4x4 block as the basic processing unit. 
For example, a motion vector for a 16x16 partition is 
treated as 16 motion vectors with the same value for all 
16 4x4 partitions. Thus, the positions of MVs become 
regular and dense. 

In this paper, we utilize the least-squares 
estimator to approximate the global motion, as 
presented in [4]. It presents an iterative least-squares 
method for the compressed video with a six-parameter 
global motion affine model. The six parameters satisfy 
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where F1 and F2 are the focal lengths before and after 
zooming, respectively. xθ , yθ , and zθ  are the rotation 

angles along x-axis, y-axis, and z-axis, respectively. 
With the minimal lens distortion, the global 

motion model formulated in (2) is a very good 
approximation if the camera motion is small and 
contains only the combination of panning, rotating, and 
zooming. xt and yt are the coordinates of motion vectors 
in the current frame, while xt-1 and yt-1 represent the 
motion compensated positions in the previous frame. 
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Our modified iterative procedure for the global 
motion estimation of the H.264 compressed video is 
shown below: 

1. Find the least-square solution to the six 
parameters using the motion vectors for all 16x16 
partitions excluding the frame boundary blocks. 

2. Compute the MVDg, defined as the absolute 
differences between all MVs and the estimated global 
motion, and the standard deviation of MVDg. 

3. Reject the MVs of the blocks whose MVDg are 
larger than a pre-defined threshold Tg (a reasonable 
choice here is 1.5 times of the standard deviation value) 
in the next iteration. 

4. Perform three iterations to obtain the final six 
parameters of the global motion model and MVDg. 
Note that in the 2nd and 3rd iterations, the MVs are no 
longer restricted to 16x16 partitions. 

The reason for only choosing MVs of 16x16 
partitions is the observed results of partition modes 
distribution, as shown in Figure 2. The partition modes 
are represented by an 8-bit gray scale image, where the 
pixel value of 0 stands for mode 0 (skip mode), 32 for 
mode 1, and so on. We can find that the large block 
partitions are likely to be the background. Note that the 
MVs of macroblocks on frame boundaries become 
irregular for moving cameras. Therefore they are 
removed from all intermediate calculation results. Note 
that applying only the MVs of 16x16 partitions in the 
1st iteration for global motion estimation reduces the 
computational cost overall by 28% on average without 
degradation of segmentation results. 

 

   
Figure 2. Partition modes distribution for the 

137th frame of Foreman 
 
2.2. Mode weighting 
 

We utilize the observations described above and 
give different weightings to the MVDg in accordance 
with their block partition modes. The principle is that 
the weighting factors are larger for the smaller block 
partitions according to the following equation: 

gnw MVDWMVD ×=                     (3) 

where MVDg are the absolute differences between the 
estimated global motion and MVs; Wn is the weighting 
factor for the block partition mode n; MVDw represent 
the resultant weighted differences. In our experiments, 

we set W0 = 3, W1 = 4, W2 = W3 = 5, W4 = 8, and 10 for 
the rest partition modes. 
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Figure 3. The 2nd frame of Dancer: (a) original 
image, (b) MVDg, and (c) MVDw 
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(b)                                  (c) 

Figure 4. The 102nd frame of Foreman: (a) 
original image, (b) MVDg, and (c) MVDw 

 
Figure 3 and Figure 4 show the MVDg and MVDw 

results for the 2nd frame of Dancer and the 102nd frame 
of Foreman. For Dancer, the MVDg provides little 
information for the foreground segmentation owing to 
the homogeneous background blocks with noisy MVs. 
Through the mode weighting for different partitions, 
the foreground objects are successfully highlighted. 
However, part of foreground blocks are given light 
weightings in Foreman, which result in unsatisfied 
fragmented segmentations. To keep the intactness and 
further enhance the segmentation results, we employ 
spatial and temporal filters for refinements. 
 



2.3. Spatio-temporal refinement 
 

We have to perform spatio-temporal refinements 
due to some defects that result in MV noises. The 
reasons are explained as follows. First, MVs do not 
accurately represent the true motions of objects. They 
are generated by the minimum cost consideration only. 
Besides, there are revealing blocks and slightly moving 
background objects. Of course, our mode weighting for 
different partition modes may be inadequate in a few 
cases. Thus, we propose low-pass filters for partitions 
of mode 0 to 3, and mode 4 to 7, respectively. The 
proposed spatial filter for mode 0 to 3 is expressed by 
the following equation: 
 
 
                                                                                    

(4) 
where MVDs is the filtered value for a 4x4 block; lu, ld, 
ll, and lr are the distances from the 4x4 block to the 
nearest vertical and horizontal neighboring partitions in 
the unit of blocks; MVDw,u, MVDw,d, MVDw,l, and MVDw,r 
are the MVDw values of the neighbors; MVDw,i is that of 
the processing block. 
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(b) 
Figure 5. Examples of the spatial filer for mode 
0~3: (a) 16x16 partition and (b) 8x16 partition 

 

 
 
 
 
 
 
 

Figure 6. Spatial filter for mode 4~7 
 

We set N = 10 for mode 0 and 1, N = 8 for mode 2 
and 3. Figure 5(a) and 5(b) illustrate two examples of 
our spatial filter.For mode 4 to 7, we use the filter 
shown in Figure 6 to eliminate MV noises. In H.264, 
there could be intra coded MBs in P and B frames. We 
apply a filter similar to that for mode 0~3 but without 
the central coefficient. 

For temporal refinement, we take the average of 
the MVDs value of the processing block in the current 
frame and the spatio-temporal filtered result, MVDr, of 
the corresponding motion-compensated block in the 
previous frame as follows. 

( ) 21−+= t
r

t
s

t
r MVDMVDMVD                 (5) 

where t represents the current frame and t-1 stands for 
the previous frame. The positions of the corresponding 
blocks in the previous frame are obtained by adding up 
the MVs and positions of the processing blocks in the 
current frame. The temporal refinement can help keep 
the true foreground and remove the burst MV noises. 
 
2.4. Adaptive thresholding 
 

The global motion estimation errors result in 
noises, especially for blocks near frame boundaries. It 
is because motion vectors caused by zooming and 
rotating are proportional to the distance from the 
original point, i.e., the center of a frame. Consequently, 
it is inadequate to apply the same threshold over the 
entire frame. The threshold should increase with this 
distance. In addition, to avoid the dramatic variations 
in segmentation results, we define the mean value of 
MVDr multiplied by a coefficient as the adaptive 
threshold, which is formulated as follows. 
 

(6) 

where Th(x, y) is the adaptive threshold for a block in 
position (x, y). xmax and ymax are the maximum x and y 
values. MVDr,mean is the mean value of MVDr. C is a 
constant. A constant threshold T is also applied to 
remove noises in case the mean value is too small. In 
our experiments, C = 1.5 and T = 16. A comparative 
example is exhibited in Figure 7. The segmentation for 
fixed thresholding uses threshold = 7 here. 
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(a) 

   
(b)                                  (c) 

Figure 7. The segmentation results for the 
274th frame of Stefan: (a) original image, (b) 
fixed threshold, and (c) adaptive threshold 

 
3. Simulation results 
 

The segmentation results for the CIF-size test 
sequences Bus, Coastguard, Dancer, and Foreman are 
shown in Figures 8-11, respectively, while the 
encoding parameters are listed in Table 1. All test 
sequences were captured from a moving camera or 
with the moving background. The frame boundaries 
are not processed so that there would not exist 
segmented foreground blocks. 

From the segmentation results shown here, we can 
observe the fact that the motion-based methods are 
more suitable for rigid foreground objects than for non-
rigid ones. This is the result of that motion-based 
methods do not segment the regions without motion 
vectors. While the foreground objects are rigid, such as 
Figure 8 and 9, the uniform motion vectors make the 
segmentation results more accurate than those of 
sequences with non-rigid foreground objects, as shown 
in Figure 10 and 11. In addition, the revealing 
background blocks in Figure 10 result in false 
segments. The similar colors of different objects could 
also affect segmentation results, such as the hat and the 
background in Figure 11. 

Our proposed refinement method can eliminate 
motion vector noises effectively. For example, the 
ripples in Figure 9 are almost removed from the 
segmentation result. For further accurate segmentation, 
the additional contour or other spatial information may 
be much helpful. However, the computational costs 
will increase and may be not suitable for real-time 
applications. 

 

   
Figure 8. Segmentation result for the 72nd 
frame of Bus 
 

   
Figure 9. Segmentation result for the 24th 

frame of Coastguard 
 

   
Figure 10. Segmentation result for the 108th 

frame of Dancer 
 

   
Figure 11. Segmentation result for the 172nd 

frame of Foreman 
 

Table 1. Encoding parameters 
Profile JM 10.2 Baseline 
Frame Rate 30 
Intra period 30 
QP 28 
Search Range 16 
FME Used  UMHexagonS 
Number of Reference Frames 1 
Partition Mode Used All on 
Rate Control Off 

 
Table 2. The processing speed (frame per 

second; FPS) on test sequences 
Video 
source 

Bus Coast-
guard 

Dancer Foreman Stefan 

FPS 40.3 39.9 39.8 39.2 39.5 

 



The positions and areas of foreground objects in 
the video captured from moving cameras can be 
rapidly acquired by our proposed method. Near 40 fps 
for CIF-size video sequences is achieved without using 
the assembly language on a PC with P4 2.8GHz CPU 
and 1GB RAM, as shown in Table 2. 
 
4. Conclusions 
 

In this paper, we present a novel motion-based 
foreground segmentation algorithm for the H.264-
encoded video captured by moving cameras. The 
global motion, including panning, tilting, and zooming, 
is estimated by the least-squares method using the 
motion vectors of large partitions. In addition to 
motion vectors, inter-coding partition modes are 
considered in the proposed method to enhance the 
segmentation results by means of different weightings 
and spatio-temporal refinements. We also propose an 
adaptive threshold method for the final foreground 
segmentation. The proposed segmentation algorithm 
requires low computational costs and suits for real-time 
applications such as the video surveillance system and 
real-time object tracking. 
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