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ABSTRACT 
 
In multi-camera surveillance system, the importance of 
each camera differs from each other and needs to be 
identified. In this paper, we develop an Edge-based 
Foreground Block Detection (EFBD) method to find out 
changing (foreground) blocks and then determine the 
importance of cameras based on EFBD. We also use 
H.264 codec to develop a multi-camera surveillance 
system which provides functions of auto alarm, 
dynamic recording, and foreground detection, and 
makes important cameras obtain better visual quality. 
The experimental results demonstrate that the proposed 
scheme can extract the foreground blocks efficiently 
and can handle the variations of light conditions. The 
detected foreground blocks can provide clues to better 
rate allocation and coding efficiency in our 
implemented multi-camera surveillance system. 
 
Keywords: edge detection, foreground block detection, 
region fill-in, H.264 video coding, multi-camera 
surveillance system. 
 

1. INTRODUCTION 
 
In multi-camera surveillance system, compared with 
other inactive cameras when one of cameras changes, 
the surveillance will focus on the changing camera. In 
other words, at the same time the importance of each 
camera does not necessarily equal to each other. 
Therefore, we hope that the important cameras can 
obtain higher video quality. We determine the important 
cameras based on the number of changing blocks. Also, 
in order to automatically identify the important cameras, 
we develop a foreground block detection method to 
detect the number of foreground blocks. Furthermore, 
we make use of the rate allocation method so that the 
important cameras can obtain higher video quality. And 
the detection method can be used to record dynamically 
and automatically for saving the storing space. 

At present, most detection methods use either 
temporal or spatial information existed in the image 
sequence. Several conventional approaches for 
detection are outlined as follows [1]. 
1. Background subtraction: Background subtraction is 

the most common method for real-time segmentation 

of moving regions in image sequences. A simple and 
common background subtraction uses several 
seconds of frames to model each pixel of the 
background with a normal distribution. Then 
subtract the current image from the background 
image and pass the resulting difference image 
through the threshold to detect foreground pixels. 
Many systems use this method to detect pixels 
belonging to moving objects [2]-[10]. 

2. Temporal differencing: Temporal differencing 
makes use of the pixel-wise differences between two 
or three consecutive frames in an image sequence to 
extract moving regions. Temporal differencing is 
quite adaptive to dynamic environments, but 
generally does a poor job of extracting all the 
relevant pixels, e.g., there may be holes left inside 
moving entities. As an example of this method, 
Lipton et al. [11] detect moving targets in real video 
streams using temporal differencing. After the 
absolute difference between the current and the 
previous frame is obtained, a threshold function is 
used to determine changes. By using a connected 
component analysis, the extracted moving sections 
are clustered into motion regions. An improved 
version uses three-frame instead of two-frame 
differencing [12]. 

3. Optical flow: Optical-flow-based motion detection 
uses characteristics of flow vectors of moving 
objects over time to detect moving regions in an 
image sequence. For example, Meyer et al. [13] 
compute the displacement vector field to initialize a 
contour based tracking algorithm, called active rays, 
for the extraction of articulated objects. The results 
are used for gait analysis. Optical-flow-based 
methods can be used to detect independently moving 
objects even in the presence of camera motion. 
However, most flow computation methods are 
computationally complex and very sensitive to noise, 
and cannot be applied to video streams in real time 
without specialized hardware. More detailed 
discussion of optical flow can be found in Barron’s 
work [14]. 

 
2. EDGE-BASED FOREGROUND BLOCK 

DETECTION (EFBD) 
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In order to coordinate the surveillance system, the 
proposed foreground block detection algorithm should 
conform to the following requirements: 

1. In the surveillance system, any changes should be 
detected and recorded, such as caused by the shadow, 
human, vehicle, and so on. 

2. When the moving object keeps static for a long time, 
it should be identified as the background. 

3. In our surveillance system, the video codec uses 
H.264. Therefore, we need a relatively low 
complexity detection algorithm for real time 
implementation. 

4. In order to match up H.264, we use the 4x4 block 
size as the basic unit of the developed foreground 
block detection. 

 
2.1. Foreground edge map extraction 
 
We use the edge-based background subtraction method 
for extracting foreground edges. While comparing with 
the temporal difference method, the background 
subtraction method would not be affected significantly 
by the frame rate. For example, when the frame rate is 
low, using the temporal difference method would result 
in appearing ghost. On the contrary, when the frame 
rate is high and objects move slowly, adopting the 
temporal difference method would lead to broken 
foreground objects. However, the background 
subtraction method is sensitive to the light variations. 
Therefore, we combine the concept of edge detection in 
order to eliminate the influences of light. 
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Fig. 1 Block diagram of the foreground edge map 
extraction. 
 

Fig. 1 shows the block diagram of the foreground 
edge map extraction. After calculating the edge map 
difference of images using a Sobel edge detector, we 
extract the moving object edge nME  of the current 
frame bF  based on the current frame’s edge map 

( )n nE F= Φ  and the background frame’s edge map 

( )b bE F= Φ . Here all operations are performed in the 
luminance component. We define the edge model 

1{ , , }n kE e e= L  and 1{ , , }
bb kE e e= L  as the set of all 

edge points detected by the Sobel operator in the current 
frame nF  and background frame bF , where k w h≤ ×  
and bk w h≤ × , w  is the image width, h  is the image 
height. Similarly, we denote 1{ , , }n lME m m= L  as the 
set of l  moving object edge points, where l k≤  and 

n nME E⊆ .  
11

1 1

( , ) { ( , ) | ( , ) ( , ) }
ji

n n b n foreground
x i y j

ME i j e i j E E x y E x y TH
++

= − = −

= ∈ − ≥∑ ∑
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Where ( , )i j  represents a pixel location, foregroundTH is 
threshold of the foreground edge points. The additional 
errors caused by the Sobel edge detector can be reduced 
by appropriately setting the threshold The edge points in 

nME  are not restricted to the moving object’s boundary, 
and can be in the interior of object boundary, as shown 
in Fig. 2. 
 

   
Fig. 2 Edge maps resulting from (1). 

 
2.2. Foreground block extraction 
 
After extracting the edges of foreground objects, we 
should find out their corresponding regions. The 
common methods are 4-connected and 8-connected 
region filling. We hope that the system can handle 
twenty frames per second at least, but 4-connected and 
8-connected region filling are too complicated to fit our 
system. On the other hand, in the video object 
segmentation, the Fill-in method [15], [16] is used to 
extract objects because it is efficient and low-
complicated. But the method is mainly aimed at 
extracting one or two objects in a frame. In other words, 
multiple objects can not be applied. Therefore, we serve 
the Fill-in method as the basis to develop the proposed 
foreground block extraction algorithm. 

The foreground block extraction includes three 
stages: The first step is to treat the edge pixel as the 
basis for the row filling. The second step is to transform 
the pixel-based frame into the 4x4 block-based frame. 
The third step is based on the results obtained from the 
second step and uses the 4x4 block-based frame for the 
column filling. The final results are foreground blocks. 
The flow chart is shown in Fig. 3, and the procedures 
are described as follows. 

1011



 

nME nFbF

nBS

nF  
Fig. 3 Block diagram of the foreground block extraction. 
 
1. We regard RowN  pixels as the unit for the fill-in of 

row direction. First of all, we find out the first edge 
pixel in nME  and serve its coordinate as the start 
point for fill-in. And then from the start point we 
find out the coordinate of the last edge pixel or the 
coordinate conforming to (2) within RowN  pixels in 
the same row for identifying the stop point. 
Subsequently, we set the pixels from the start to the 
stop as foreground pixels, find out the next edge 
pixel as the start point for fill-in and also repeat the 
above procedures for all rows. RowTH  is a threshold 
for determining foreground pixels. 
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Fig. 4 Pixel fill-in of rows. 
 
2. Calculate the number of foreground pixels in each 

4x4 block. If the number is larger than ColTH , set 
the block as a foreground block, where ColTH  is a 
threshold for determining foreground blocks. 

 

    

    

i Number of  foreground points in 4x4 block THCol
S

f

et foreground block 

Set non foreground b
esle

lock 

≥

−

 
Fig. 5 Fill-in pixel-to-block mapping. 
 
3. We use ColN  blocks as the unit for the fill-in of 

column direction. First of all, we find out the first 
foreground block obtained from the results of 
previous step and serve it as the start point for fill-in. 
And then from the start point we find out the last 
foreground block within ColN  blocks in the same 
column as the stop point (block). Subsequently, we 
set the blocks from the start to the stop as 
foreground blocks, find out the next foreground 
block as the start point for fill-in and also repeat the 
above procedures for all columns. Finally, we 
complete the extraction of foreground blocks. 
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Fig. 6 Block fill-in of columns. 
 
2.3. Background model update 
 
We assume that the background frame model can be 
established by capturing a series of static images at the 
very start. However, the background subtraction method 
is sensitive to dynamic changes, such as accidents or 
light. Therefore, when the background changes with the 
passing of time, we need to update the background 
frame model continually to reduce errors. 
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As the proposed EFBD algorithm finds out the 
foreground blocks, if a certain foreground block keeps 
still in the same location for a long time, then the block 
should belong to the background model. For example, 
when a car is driven into a parking space and keeps still 
for a long time, then the car should be re-classified into 
the background frame. Under the long-time surveillance, 
with the passing of time the background frame should 
be also updated in order to maintain the accuracy of the 
foreground detection. Due to we adopt the block-based 
detection, we develop a block-based method to update 
our background model as well. At first, we classify 
blocks as follows: 

 FB  (foreground block): The foreground blocks 
obtained by applying EFBD. 

 NFB  (Non-foreground block): The blocks do not 
belong to the foreground blocks. 

 SFB  (Stationary FB ) - The foreground blocks keep 
motionless in the same location. 

 SNFB  (Stationary NFB ) - The non-foreground 
blocks keep changeless in the same location. 
The background model needs to be updated for two 

kinds of blocks. They are SFB  and NFB  but not SNFB , 
respectively. In the first case, we define 

st fFB × as the set 

of all foreground blocks detected by our algorithm in 
the st f× th frame, where t  denotes the t  th second, sf  

denotes the source frame rate, and 
s st f t fNFB FB× ×∉ . 

st fSFB ×  is defined as the set of k  stationary foreground 

blocks, where k l≤  and 
s st f t fSFB FB× ×⊆ , as follows: 

( 1) ( )s s s FB st f t f t f t T fSFB FB FB FB× × − × − ×= ∩ ∩ ∩L           (3) 

where FBT  (sec)  denotes the foreground block’s stay 
time. The pixels belong to 

st fSFB ×  in the current frame 

nF  will be copied into the corresponding pixels of 

background frame bF . 
In the second case, we define 

st fSNFB ×  as the set 

of bk  stationary NFBs in the st f×  th frame, where 

s st f t fSNFB NFB× ×⊆ , as follows: 

( 1) ( )s s s NFB st f t f t f t T fSNFB NFB NFB NFB× × − × − ×= ∩ ∩ ∩L  (3) 

where   NFBT (sec) denotes the non-foreground block’s 
stay time. The pixels do not belong to SNFB  in the 
current NFB  frame will be copied into the 
corresponding pixels of background frame. Form the 
above two steps, we can dynamically update 
background model that can be adapted to still 
foreground objects and background light changes. 
 

3. DEVELOPED MULTI-CAMERA 
SURVEILLANCE SYSTEM 

 
The surveillance system includes multiple PC Cameras 
and a Central Location. PC Camera is used for detecting 

foreground blocks and encoding captured scenes. 
Central Location is used for receiving encoded videos 
and sending control messages to each camera. The 
system architecture shows in Fig. 7 and Fig. 8 and has 
the following characteristics: 

1. Monitor more than three cameras simultaneously. 

2. Provide high video quality and dynamic or full-time 
recording. 

3. Achieve more than 20 fps processing speed in one 
camera. 

4. Set the compression quality by oneself. 

5. Monitor the video immediately through the network. 

6. Provide different video quality based on the camera 
importance. 

7. View the flow rate of each camera. 

8. Support Intel Hyper-threading technology. 

 

EFBD

DirectShow
H.264 

Encoder

Video 
Capture Card

Network
Video streaming

RTP

PC Camera
Control Signals

TCP

 
Fig. 7 Architecture of PC Camera. 

 

Fig. 8 Architecture of Central Location. 

 
3.1. PC Camera 
 
1. Capture different video sources: 
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The system uses DirectShow to connect with 
different video capture devices, as illustrated in Fig. 9. 
As long as the device specification conforms to WDM 
and VFW, the program can capture videos successfully. 

 

 
Fig. 9 Functions of capture device. 

 
2. Provide the function of EFBD: 

Under surveillance, Central Location can control 
the detection size of EFBD and the background model 
update period for PC Cameras, as shown in Fig. 10. The 
surveillance system can also deliver the alarm and even 
send the e-mail to inform remote what is happening and 
start recording automatically. 

 

 
Fig. 10 Functions of EFBD. 

 
3.2 Central Location 
 
1. Provide dynamic or full-time recording: 

According to users’ preferences, they can adjust 
recording types for saving storage space. At present, we 
provide three types of recording: Motion, Detect, and 
Every Frame. Motion represents only to store frames 
with non-zero motion vectors. Detect means only to 
store frames in which foreground blocks are detected 
out. Every Frame is to store all captured frames. Fig. 11 
shows above recording functions and the user interface. 

 

 
Fig. 11 Functions of recording. 

 

2. Monitor the flow rate of each camera: 
We provide the flow rate of each camera in order to 

make users view the rate clearly. The target rate of each 
camera is dynamically allocated and controlled by 
Central Location for different visual quality. Fig. 12 
shows an example. 

 

 
Fig. 12 Functions of monitoring flow rate. 
 

4. SIMULATION RESULTS 
 
This paper adopts the sequence Hall for the simulation 
and the results are described as follows. 
 

  
Fig. 13 Original frame 35 and resulting EFBD. 

 

  
Fig. 14 Original frame 120 and resulting EFBD. 

 

  
Fig. 15 Original frame 160 and resulting EFBD. 

 

  
Fig. 16 Original frame 220 and resulting EFBD. 
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From Fig. 13 to Fig. 15, we observe that EFBD can 
extract the foreground blocks effectively. From Fig. 14 
to Fig. 16, when the suitcase is put on the table for a 
long time, it will be updated into the background frame 
by EFBD, as shown in Fig. 17. Two persons in the film 
walk toward to or away from the camera, so parts of 
blocks will keep steady in the same location for a long 
time. As a result, these blocks are also updated into the 
background frame. 

 

  
Fig. 17 Initial background frame and updated 
background frame. 

 
We also capture some real surveillance videos for 

testing the performance of EFBD. Because of camera 
noises, light changes, and other factors, some additional 
errors could be involved. The dotted-line area depicted 
in Fig. 18 is caused by the shadow. We hope that the 
developed algorithm can detect any moving objects, of 
course, including the moving shadow. In Fig. 19, many 
persons move in the same scene simultaneously. EFBD 
can still extract the regions very well. When the moving 
object is close to the camera or in the scene that is over-
exposed to the light, EFBD even extract the foreground 
objects successfully, as shown in Fig. 20 and Fig. 21. 

In average, EFBD needs 10.12 ms for detecting a 
frame. After the code optimization, PC Camera can 
encode the video by H.264 at the speed of 26.84 fps 
with the proposed EFBD scheme. 

 

  
Fig. 18 Original frame and resulting EFBD. 

 

  
Fig. 19 Original frame and resulting EFBD. 

 

  
Fig. 20 Original frame and resulting EFBD. 
 

  
Fig. 21 Original frame and resulting EFBD. 
 

5. CONCLUSIONS 
 
The proposed EFBD algorithm can extract the 
foreground blocks effectively and quickly. In addition, 
EFBD is not sensitive to the light variations. The 
background model can be updated dynamically and 
timely. The result of foreground block detection is 
helpful for determining the importance order of multiple 
surveillance cameras. However, a drawback of EFBD is 
that it can not accurately extract the foreground blocks 
with the similar luminance to the background parts. 
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