
FOREGROUND DETECTION IN MULTI-CAMERA SURVEILLANCE SYSTEM

1Ming-Yi Lin (林明毅), 2Tien-Hsu Lee (李天序), and 1Pao-Chi Chang (張寶基)

1Dept. of Communication Engineering, National Central University
2Dept. of Electrical Engineering, National Chi Nan University

ABSTRACT

In multi-camera surveillance system, the importance of
each camera differs from each other and needs to be
identified. In this paper, we develop an Edge-based
Foreground Block Detection (EFBD) method to find out
changing (foreground) blocks and then determine the
importance of cameras based on EFBD. We also use
H.264 codec to develop a multi-camera surveillance
system which provides functions of auto alarm,
dynamic recording, and foreground detection, and
makes important cameras obtain better visual quality.
The experimental results demonstrate that the proposed
scheme can extract the foreground blocks efficiently
and can handle the variations of light conditions. The
detected foreground blocks can provide clues to better
rate allocation and coding efficiency in our
implemented multi-camera surveillance system.

Keywords: edge detection, foreground block detection,
region fill-in, H.264 video coding, multi-camera
surveillance system.

1. INTRODUCTION

In multi-camera surveillance system, compared with
other inactive cameras when one of cameras changes,
the surveillance will focus on the changing camera. In
other words, at the same time the importance of each
camera does not necessarily equal to each other.
Therefore, we hope that the important cameras can
obtain higher video quality. We determine the important
cameras based on the number of changing blocks. Also,
in order to automatically identify the important cameras,
we develop a foreground block detection method to
detect the number of foreground blocks. Furthermore,
we make use of the rate allocation method so that the
important cameras can obtain higher video quality. And
the detection method can be used to record dynamically
and automatically for saving the storing space.

At present, most detection methods use either
temporal or spatial information existed in the image
sequence. Several conventional approaches for
detection are outlined as follows [1].
1. Background subtraction: Background subtraction is

the most common method for real-time segmentation

of moving regions in image sequences. A simple and
common background subtraction uses several
seconds of frames to model each pixel of the
background with a normal distribution. Then
subtract the current image from the background
image and pass the resulting difference image
through the threshold to detect foreground pixels.
Many systems use this method to detect pixels
belonging to moving objects [2]-[10].

2. Temporal differencing: Temporal differencing
makes use of the pixel-wise differences between two
or three consecutive frames in an image sequence to
extract moving regions. Temporal differencing is
quite adaptive to dynamic environments, but
generally does a poor job of extracting all the
relevant pixels, e.g., there may be holes left inside
moving entities. As an example of this method,
Lipton et al. [11] detect moving targets in real video
streams using temporal differencing. After the
absolute difference between the current and the
previous frame is obtained, a threshold function is
used to determine changes. By using a connected
component analysis, the extracted moving sections
are clustered into motion regions. An improved
version uses three-frame instead of two-frame
differencing [12].

3. Optical flow: Optical-flow-based motion detection
uses characteristics of flow vectors of moving
objects over time to detect moving regions in an
image sequence. For example, Meyer et al. [13]
compute the displacement vector field to initialize a
contour based tracking algorithm, called active rays,
for the extraction of articulated objects. The results
are used for gait analysis. Optical-flow-based
methods can be used to detect independently moving
objects even in the presence of camera motion.
However, most flow computation methods are
computationally complex and very sensitive to noise,
and cannot be applied to video streams in real time
without specialized hardware. More detailed
discussion of optical flow can be found in Barron’s
work [14].

2. EDGE-BASED FOREGROUND BLOCK

DETECTION (EFBD)

1010

anywho
2006 19th IPPR Conference on Computer Vision, Graphics and Image Processing

In order to coordinate the surveillance system, the
proposed foreground block detection algorithm should
conform to the following requirements:

1. In the surveillance system, any changes should be
detected and recorded, such as caused by the shadow,
human, vehicle, and so on.

2. When the moving object keeps static for a long time,
it should be identified as the background.

3. In our surveillance system, the video codec uses
H.264. Therefore, we need a relatively low
complexity detection algorithm for real time
implementation.

4. In order to match up H.264, we use the 4x4 block
size as the basic unit of the developed foreground
block detection.

2.1. Foreground edge map extraction

We use the edge-based background subtraction method
for extracting foreground edges. While comparing with
the temporal difference method, the background
subtraction method would not be affected significantly
by the frame rate. For example, when the frame rate is
low, using the temporal difference method would result
in appearing ghost. On the contrary, when the frame
rate is high and objects move slowly, adopting the
temporal difference method would lead to broken
foreground objects. However, the background
subtraction method is sensitive to the light variations.
Therefore, we combine the concept of edge detection in
order to eliminate the influences of light.

nME

bFnF

()b bE F=Φ()n nE F=Φ

nME

() Φ () Φ

Fig. 1 Block diagram of the foreground edge map
extraction.

Fig. 1 shows the block diagram of the foreground
edge map extraction. After calculating the edge map
difference of images using a Sobel edge detector, we
extract the moving object edge nME of the current
frame bF based on the current frame’s edge map

()n nE F= Φ and the background frame’s edge map

()b bE F= Φ . Here all operations are performed in the
luminance component. We define the edge model

1{ , , }n kE e e= L and 1{ , , }
bb kE e e= L as the set of all

edge points detected by the Sobel operator in the current
frame nF and background frame bF , where k w h≤ ×
and bk w h≤ × , w is the image width, h is the image
height. Similarly, we denote 1{ , , }n lME m m= L as the
set of l moving object edge points, where l k≤ and

n nME E⊆ .
11

1 1

(,) { (,) | (,) (,) }
ji

n n b n foreground
x i y j

ME i j e i j E E x y E x y TH
++

= − = −

= ∈ − ≥∑ ∑
(1)

Where (,)i j represents a pixel location, foregroundTH is
threshold of the foreground edge points. The additional
errors caused by the Sobel edge detector can be reduced
by appropriately setting the threshold The edge points in

nME are not restricted to the moving object’s boundary,
and can be in the interior of object boundary, as shown
in Fig. 2.

Fig. 2 Edge maps resulting from (1).

2.2. Foreground block extraction

After extracting the edges of foreground objects, we
should find out their corresponding regions. The
common methods are 4-connected and 8-connected
region filling. We hope that the system can handle
twenty frames per second at least, but 4-connected and
8-connected region filling are too complicated to fit our
system. On the other hand, in the video object
segmentation, the Fill-in method [15], [16] is used to
extract objects because it is efficient and low-
complicated. But the method is mainly aimed at
extracting one or two objects in a frame. In other words,
multiple objects can not be applied. Therefore, we serve
the Fill-in method as the basis to develop the proposed
foreground block extraction algorithm.

The foreground block extraction includes three
stages: The first step is to treat the edge pixel as the
basis for the row filling. The second step is to transform
the pixel-based frame into the 4x4 block-based frame.
The third step is based on the results obtained from the
second step and uses the 4x4 block-based frame for the
column filling. The final results are foreground blocks.
The flow chart is shown in Fig. 3, and the procedures
are described as follows.

1011

nME nFbF

nBS

nF
Fig. 3 Block diagram of the foreground block extraction.

1. We regard RowN pixels as the unit for the fill-in of

row direction. First of all, we find out the first edge
pixel in nME and serve its coordinate as the start
point for fill-in. And then from the start point we
find out the coordinate of the last edge pixel or the
coordinate conforming to (2) within RowN pixels in
the same row for identifying the stop point.
Subsequently, we set the pixels from the start to the
stop as foreground pixels, find out the next edge
pixel as the start point for fill-in and also repeat the
above procedures for all rows. RowTH is a threshold
for determining foreground pixels.

[][-1] - [][-1]

[][] - [][]

[][1] - [][1]

b n Row

b n Row

b n Row

F y x F y x TH

F y x F y x TH

F y x F y x TH

> ∩

> ∩

+ + >

 (2)

 is edge point ?

Set foreground points

No

Yes

[][-1] - [][-1]

[][] - [][]

[][1] - [][1]

b n Row

b n Row

b n Row

F y x F y x TH

F y x F y x TH

F y x F y x TH

⎛ ⎞> ∩
⎜ ⎟

> ∩⎜ ⎟
⎜ ⎟+ + >⎝ ⎠

_ _last edge pointx ∪

Fill_in_start = xRowx x N= +

[][]nME y x [][1]n RowME y x N+ −between and

1x x= +

_ _Fill in stop =

x

[][] nME y x

[][]_ _n Fill in stM y artE _ _[][]n FilME y l in sx top+from to

_ _Fill in start x=

Fig. 4 Pixel fill-in of rows.

2. Calculate the number of foreground pixels in each

4x4 block. If the number is larger than ColTH , set
the block as a foreground block, where ColTH is a
threshold for determining foreground blocks.

i Number of foreground points in 4x4 block THCol
S

f

et foreground block

Set non foreground b
esle

lock

≥

−

Fig. 5 Fill-in pixel-to-block mapping.

3. We use ColN blocks as the unit for the fill-in of

column direction. First of all, we find out the first
foreground block obtained from the results of
previous step and serve it as the start point for fill-in.
And then from the start point we find out the last
foreground block within ColN blocks in the same
column as the stop point (block). Subsequently, we
set the blocks from the start to the stop as
foreground blocks, find out the next foreground
block as the start point for fill-in and also repeat the
above procedures for all columns. Finally, we
complete the extraction of foreground blocks.

_ _last edge pointy

Coly y N= +

[][]nME y x [][1]n ColME y x N+ −

1y y= +

_ _Fill in stop =

y

[][] nME y x

_[][]_n Fill in startME x []_ []_n Fill in stopME y x+

_ _Fill in start y=

Fig. 6 Block fill-in of columns.

2.3. Background model update

We assume that the background frame model can be
established by capturing a series of static images at the
very start. However, the background subtraction method
is sensitive to dynamic changes, such as accidents or
light. Therefore, when the background changes with the
passing of time, we need to update the background
frame model continually to reduce errors.

1012

As the proposed EFBD algorithm finds out the
foreground blocks, if a certain foreground block keeps
still in the same location for a long time, then the block
should belong to the background model. For example,
when a car is driven into a parking space and keeps still
for a long time, then the car should be re-classified into
the background frame. Under the long-time surveillance,
with the passing of time the background frame should
be also updated in order to maintain the accuracy of the
foreground detection. Due to we adopt the block-based
detection, we develop a block-based method to update
our background model as well. At first, we classify
blocks as follows:

 FB (foreground block): The foreground blocks
obtained by applying EFBD.

 NFB (Non-foreground block): The blocks do not
belong to the foreground blocks.

 SFB (Stationary FB) - The foreground blocks keep
motionless in the same location.

 SNFB (Stationary NFB) - The non-foreground
blocks keep changeless in the same location.
The background model needs to be updated for two

kinds of blocks. They are SFB and NFB but not SNFB ,
respectively. In the first case, we define

st fFB × as the set

of all foreground blocks detected by our algorithm in
the st f× th frame, where t denotes the t th second, sf

denotes the source frame rate, and
s st f t fNFB FB× ×∉ .

st fSFB × is defined as the set of k stationary foreground

blocks, where k l≤ and
s st f t fSFB FB× ×⊆ , as follows:

(1) ()s s s FB st f t f t f t T fSFB FB FB FB× × − × − ×= ∩ ∩ ∩L (3)

where FBT (sec) denotes the foreground block’s stay
time. The pixels belong to

st fSFB × in the current frame

nF will be copied into the corresponding pixels of

background frame bF .
In the second case, we define

st fSNFB × as the set

of bk stationary NFBs in the st f× th frame, where

s st f t fSNFB NFB× ×⊆ , as follows:

(1) ()s s s NFB st f t f t f t T fSNFB NFB NFB NFB× × − × − ×= ∩ ∩ ∩L (3)

where NFBT (sec) denotes the non-foreground block’s
stay time. The pixels do not belong to SNFB in the
current NFB frame will be copied into the
corresponding pixels of background frame. Form the
above two steps, we can dynamically update
background model that can be adapted to still
foreground objects and background light changes.

3. DEVELOPED MULTI-CAMERA
SURVEILLANCE SYSTEM

The surveillance system includes multiple PC Cameras
and a Central Location. PC Camera is used for detecting

foreground blocks and encoding captured scenes.
Central Location is used for receiving encoded videos
and sending control messages to each camera. The
system architecture shows in Fig. 7 and Fig. 8 and has
the following characteristics:

1. Monitor more than three cameras simultaneously.

2. Provide high video quality and dynamic or full-time
recording.

3. Achieve more than 20 fps processing speed in one
camera.

4. Set the compression quality by oneself.

5. Monitor the video immediately through the network.

6. Provide different video quality based on the camera
importance.

7. View the flow rate of each camera.

8. Support Intel Hyper-threading technology.

EFBD

DirectShow
H.264

Encoder

Video
Capture Card

Network
Video streaming

RTP

PC Camera
Control Signals

TCP

Fig. 7 Architecture of PC Camera.

Fig. 8 Architecture of Central Location.

3.1. PC Camera

1. Capture different video sources:

1013

The system uses DirectShow to connect with
different video capture devices, as illustrated in Fig. 9.
As long as the device specification conforms to WDM
and VFW, the program can capture videos successfully.

Fig. 9 Functions of capture device.

2. Provide the function of EFBD:

Under surveillance, Central Location can control
the detection size of EFBD and the background model
update period for PC Cameras, as shown in Fig. 10. The
surveillance system can also deliver the alarm and even
send the e-mail to inform remote what is happening and
start recording automatically.

Fig. 10 Functions of EFBD.

3.2 Central Location

1. Provide dynamic or full-time recording:

According to users’ preferences, they can adjust
recording types for saving storage space. At present, we
provide three types of recording: Motion, Detect, and
Every Frame. Motion represents only to store frames
with non-zero motion vectors. Detect means only to
store frames in which foreground blocks are detected
out. Every Frame is to store all captured frames. Fig. 11
shows above recording functions and the user interface.

Fig. 11 Functions of recording.

2. Monitor the flow rate of each camera:
We provide the flow rate of each camera in order to

make users view the rate clearly. The target rate of each
camera is dynamically allocated and controlled by
Central Location for different visual quality. Fig. 12
shows an example.

Fig. 12 Functions of monitoring flow rate.

4. SIMULATION RESULTS

This paper adopts the sequence Hall for the simulation
and the results are described as follows.

Fig. 13 Original frame 35 and resulting EFBD.

Fig. 14 Original frame 120 and resulting EFBD.

Fig. 15 Original frame 160 and resulting EFBD.

Fig. 16 Original frame 220 and resulting EFBD.

1014

From Fig. 13 to Fig. 15, we observe that EFBD can
extract the foreground blocks effectively. From Fig. 14
to Fig. 16, when the suitcase is put on the table for a
long time, it will be updated into the background frame
by EFBD, as shown in Fig. 17. Two persons in the film
walk toward to or away from the camera, so parts of
blocks will keep steady in the same location for a long
time. As a result, these blocks are also updated into the
background frame.

Fig. 17 Initial background frame and updated
background frame.

We also capture some real surveillance videos for

testing the performance of EFBD. Because of camera
noises, light changes, and other factors, some additional
errors could be involved. The dotted-line area depicted
in Fig. 18 is caused by the shadow. We hope that the
developed algorithm can detect any moving objects, of
course, including the moving shadow. In Fig. 19, many
persons move in the same scene simultaneously. EFBD
can still extract the regions very well. When the moving
object is close to the camera or in the scene that is over-
exposed to the light, EFBD even extract the foreground
objects successfully, as shown in Fig. 20 and Fig. 21.

In average, EFBD needs 10.12 ms for detecting a
frame. After the code optimization, PC Camera can
encode the video by H.264 at the speed of 26.84 fps
with the proposed EFBD scheme.

Fig. 18 Original frame and resulting EFBD.

Fig. 19 Original frame and resulting EFBD.

Fig. 20 Original frame and resulting EFBD.

Fig. 21 Original frame and resulting EFBD.

5. CONCLUSIONS

The proposed EFBD algorithm can extract the
foreground blocks effectively and quickly. In addition,
EFBD is not sensitive to the light variations. The
background model can be updated dynamically and
timely. The result of foreground block detection is
helpful for determining the importance order of multiple
surveillance cameras. However, a drawback of EFBD is
that it can not accurately extract the foreground blocks
with the similar luminance to the background parts.

6. REFERENCES

[1] W. Hu, T. Tan, L. Wang and S. Maybank, "A survey on

visual surveillance of object motion and behaviors," IEEE
Transactions on Systems, Man and Cybernetics Part C:
Applications and Reviews, vol. 34, pp. 334-352, 2004.

[2] K. Toyama, J. Krumm, B. Brumitt and B. Meyers,
"Wallflower: Principles and practice of background
maintenance," in Proceedings of the 1999 7th IEEE
International Conference on Computer Vision (ICCV'99),
Sep 20-Sep 27 1999, 1999, pp. 255-261.

[3] S. Kamijo, Y. Matsushita, K. Ikeuchi and M. Sakauchi,
"Traffic monitoring and accident detection at
intersections," Proceedings IEEE Conference on
Intelligent Transportation Systems, pp. 703-708, 1999.

[4] D. Gutchess, M. Trajkovic, E. Cohen-Solal, D. Lyons and
A. K. Jain, "A background model initialization algorithm
for video surveillance," in 8th International Conference on
Computer Vision, Jul 9-12 2001, 2001, pp. 733-740.

[5] R. Cucchiara, C. Grana, M. Piccardi and A. Prati,
"Detecting moving objects, ghosts, and shadows in video
streams," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25,
pp. 1337-1342, 2003.

[6] H. Lin, T. Liu and J. Chuang, "A probabilistic SVM
approach for background scene initialization," in

1015

International Conference on Image Processing (ICIP'02),
Sep 22-25 2002, 2002, pp. 893-896.

[7] A. Makarov, "Comparison of background extraction based
intrusion detection algorithms," in Proceedings of the
1996 IEEE International Conference on Image Processing,
ICIP'96. Part 1 (of 3), Sep 16-19 1996, 1996, pp. 521-524.

[8] E. Durucan and T. Ebrahimi, "Change detection and
background extraction by linear algebra," Proceedings of
the IEEE, vol. 89, pp. 1368-1381, 2001.

[9] F. Ziliani and A. Cavallaro, "Image analysis for video
surveillance based on spatial regularization of a statistical
model-based change detection," Real Time Imaging, vol. 7,
pp. 389-399, 2001.

[10] C. Kim and J. Hwang, "Fast and automatic video object
segmentation and tracking for content-based applications,"
IEEE Transactions on Circuits and Systems for Video
Technology, vol. 12, pp. 122-129, 2002.

[11] A. J. Lipton, H. Fujiyoshi, and R. S. Patil, “Moving target
classification and tracking from real-time video,” in Proc.
IEEE Workshop Applications of Computer Vision, 1998,
pp. 8–14.

[12] C. Li, Y. Li, Q. Zhuang, Q. Li, R. Wu and Y. Li,
“Moving object segmentation and tracking in video,” in
Proc. Machine Learning and Cybernetics, vol.8, pp. 4957-
4960, Aug. 2005

[13] D. Meyer, J. Denzler, and H. Niemann, “Model based
extraction of articulated objects in image sequences for
gait analysis,” in Proc. IEEE Int. Conf. Image Processing,
1998, pp. 78–81.D. Meyer, J. Psl, and H. Niemann, “Gait
classification with HMM’s for trajectories of body parts
extracted by mixture densities,” in Proc. British Machine
Vision Conf., 1998, pp. 459–468.

[14] J. Barron, D. Fleet, and S. Beauchemin, “Performance of
optical flow techniques,” Int. J. Comput.Vis., vol. 12, no.
1, pp. 42–77, 1994.

[15] C. Kim and J. Hwang, "Fast and automatic video object
segmentation and tracking for content-based applications,"
IEEE Transactions on Circuits and Systems for Video
Technology, vol. 12, pp. 122-129, 2002.

[16] T. Meier and K. N. Ngan, “Video segmentation for
content-based coding,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 9, pp. 525-538, Dec.
1999.

1016

