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bstract

A lossless wavelet-based image compression method with adaptive prediction is proposed. Firstly, we analyze the correlations between wavelet
oefficients to identify a proper wavelet basis function, then predictor variables are statistically test to determine which relative wavelet coefficients
hould be included in the prediction model. At last, prediction differences are encoded by an adaptive arithmetic encoder. Instead of relying on

fixed number of predictors on fixed locations, we proposed the adaptive prediction approach to overcome the multicollinearity problem. The

roposed innovative approach integrating correlation analysis for selecting wavelet basis function with predictor variable selection is fully achieving
igh accuracy of prediction. Experimental results show that the proposed approach indeed achieves a higher compression rate on CT, MRI and
ltrasound images comparing with several state-of-the-art methods.

2006 Elsevier Ltd. All rights reserved.
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. Introduction

Medical images are a special category of images in their char-
cteristics and purposes. Medical images are generally acquired
rom special equipments, such as computed tomography (CT),
agnetic resonance (MRI), ultrasound (US), X-ray diffraction,

lectrocardiogram (ECG), and positron emission tomography
PET). In practice, the compression of medical images must
e lossless because a minor loss may result in a serious con-
equence. We here accordingly focus on the development of an
daptive prediction scheme for lossless medical image compres-
ion.

One of the key techniques for efficient compression is pre-
iction. The function of a prediction is to infer the current data
y means of the previously known data. The predicted value
hould approximate the original value; in other words, the dif-
erences between the original data and the predicted values are
xpectedly minimal. In general, the compression efficiency is
ighly related to the accuracy of the prediction scheme [1]; thus
high accuracy prediction scheme is pursued. Many advanced
mage compression techniques have been developed in response
o the increasing demands for medical images. JPEG2000 [2–4]
ombines embedded block coding with optimized truncation

∗ Corresponding author. Tel.: +886 3 4227151x35202; fax: +886 3 4222681.
E-mail address: tsengdc@ip.csie.ncu.edu.tw (D.-C. Tseng).
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EBCOT) technique with lifting integer wavelet transform to
ffer plenty of advanced features. It is able to provide a high per-
ormance lossless compression that is superior to JPEG standard
t low bit rate. Wu and Memon [5,6] proposed the context-
ased adaptive lossless image codec (CALIC) approach utilizing
nclosing (360◦) modeling contexts to obtain the distribution of
he encoded symbols and the prediction scheme. Moreover, an
nterband version of CALIC [7] which incorporates interband
rediction technique into the original CALIC was proposed for
ultispectral and remotely sensed images. Przelaskowski [8]

roposed the scanning statistical modeling (SSM) method pro-
iding a lot of experimental evidences in a series of processes:
aster scan, 5/11 filter, and quincunx decomposition, for medical
mage compression. For lower-quality ultrasound images, SSM
an achieve a high compression rate. Buccigrossi and Simon-
elli [9] proposed the lossy embedded predictive wavelet image
oder (EPWIC) adopting conditional probabilities calculated
rom their proposed statistical model for prediction. Although
he experimental results show that the conditional probability

odel appears to be incompatible with CT images, its statis-
ical analysis is still helpful understanding image properties to
nhance the compression capability.

To achieve a higher compression rate for lossless-compressed

edical images, we propose a wavelet-based compression

cheme incorporated with an adaptive prediction (WCAP). At
rst, we initiate a correlation analysis of wavelet coefficients

o identify a proper basis function for wavelet decomposition,

mailto:tsengdc@ip.csie.ncu.edu.tw
dx.doi.org/10.1016/j.compmedimag.2006.08.003
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Fig. 1. The block diagram

here wavelet coefficients are regarded as the predictor (inde-
endent) and response (dependent) variables of a prediction
quation. Then we launch the selection of predictor variables
ased on a statistic test to determine which predictor variables
hould be included in the prediction equation. The generated
rediction equations are then applied to predict most wavelet
oefficients except the lowest-resolution coefficients. Finally, an
daptive arithmetic encoder is adopted to encode the differences
etween the original and corresponding predicted coefficients.

The proposed WCAP method consists of five stages: corre-
ation analysis of wavelet coefficients, lifting integer wavelet
ransform, predictor variable selection, prediction and quanti-
ation, and adaptive arithmetic coding, as shown in Fig. 1 and
riefly described as follows:

i. Analyze the correlations between wavelet coefficients to
identify a proper wavelet basis function and the higher-
correlation coefficients.

i. Decompose a medical image using a lifting integer wavelet
transform with the identified basis function.

i. Construct adequate prediction equations to describe the rela-
tionship of wavelet coefficients in LH, HL, and HH subbands,
respectively.

. Apply the prediction equations to compute the differences
between the original and corresponding predicted values.

. Use adaptive arithmetic coding [10,11] to code the differ-
ences.

The remaining sections of this paper are organized as fol-
ows. Section 2 describes the correlation analysis of wavelet
oefficients for identifying a proper wavelet basis function and
igher-correlation coefficients. The selection of predictor vari-
bles and prediction are presented in Section 3. Experiments are
eported in Section 4. Conclusions are given in Section 5.
. The correlation analysis of wavelet coefficients

The wavelet transform records the differences between neigh-
oring signals in several different scales [12]. The wavelet coef-

h
w
s
v

proposed WCAP scheme.

cients have the locality, multiresolution, compression, clus-
ering, and persistence properties [13] and therefore are suitable
or signal/image analysis. Lifting integer wavelet decomposition
as further properties for signal/image analysis: (i) it transforms
ntegers to integers and allows perfect reconstruction of the orig-
nal data; (ii) it is capable of accomplishing fast in-place com-
utation. The persistence and clustering properties mean that
large/small wavelet coefficient tends to have large/small val-
es in its neighbors and across scales. Hence, wavelet transform
imultaneously take advantages of the interscale and intrascale
ependencies among wavelet coefficients.

To select a proper wavelet basis function, the high intrascale
nd interscale dependencies are pursued. We take wavelet coef-
cients as random variables and use correlation of coefficients

o evaluate the dependencies. The correlation of wavelet coeffi-
ients x and y is given as

xy = SSxy√
SSxx

√
SSyy

, (1)

here SSij is the covariance of coefficients i and j, and SSii is
he variance of coefficient i,

Sxy =
∑n

i=1(xi − x̄)(yi − ȳ)

n
,

Sxx =
∑n

i=1(xi − x̄)2

n
,

nd

Syy =
∑n

i=1(yi − ȳ)2

n
.

We consider several wavelet basis functions. For each basis
unction, we examine all coefficients in the parent, aunt, and
urrent subbands of every processing coefficient to find the
igher-correlation coefficients as illustrated in Fig. 2. The

igher-correlation coefficients are firstly used to determine
hich wavelet basis function is the best for the prediction and

econdly used in the following stage to select the final predictor
ariables.
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Fig. 2. The relation map for computing correlation between coef

. The selection of predictor variables

Prediction [9,14] estimates response (dependent) variable y
rom the values of predictor (independent) variables xi, i ≥ 1.
he linear prediction model containing k independent variables
an be expressed as

= β0 + β1x1 + β2x2 + · · · + βkxk + ε, (2)

here y is the response variable, x1, x2, . . ., xk the predictor
ariables, β0, β1, . . ., βk the model parameters, and ε is the
andom error.

Inadequate model may result in seriously biased estimates.
o avoid gaining uncertain results, many prediction methods use
redictor variables as many as possible even if the effect of the
redictor variables is insignificant. Such an over-specified model
ith extraneous predictor variables may suffer from the multi-

ollinearity problem [15,16]. On the other hand, to minimize
he size of storage, the number of predictor variables should be
uly reduced within an acceptable error.

In most previous studies [5,6,17,18], the prediction was
enerally conducted with a fixed number of predictor variables

t fixed locations. Actually, every kind of medical images
ot only has its own statistical distribution but also demon-
trates different properties in different wavelet subbands. To
chieve more accurate prediction, the number of predictor

s

F

t c and the coefficients in the parent, aunt, and current subbands.

ariables must be adaptively adjusted based on the image’s
roperties.

In the proposed WCAP method, an image is first decomposed
nto wavelet coefficients using the selected basis function. The
oefficients in LH, HL, and HH subbands describe strengths of
he horizontal, vertical, and oblique edges of the image, respec-
ively. Furthermore, wavelet transform have strong interscale
ersistence property between parent–child wavelet coefficients
n a wavelet tree and weaker intrascale clustering property. Thus,
raditional approaches [9,17,18] applying a single prediction
quation are not adequate for accurate prediction in wavelet
omain. We here use different prediction equations for different
ubbands to achieve a more accurate prediction.

Let Sind = {x1, x2, . . ., xk} be the set of the higher-correlation
oefficients found in the previous stage. We want to find a subset
o = {x′

1, x
′
2, . . . , x

′
j}, where j ≤ k, such that the subset is better

o predict the response coefficients. Here backward elimination
rocedure [15] for data-driven variable selection was used to
btain the So subset. In the procedure, the partial F test statistic
15,16] is used to help selecting predictor variables. Initially, all
igher-correlation coefficients are taken as predictor variables
nd considered in the prediction model. Each predictor x has a
i

pecific partial F test value, F∗
i , defined as

∗
i = MSR(xi |x1, x2, . . . , xi−1, xi+1, . . . , xk)

MSE(x1, x2, . . . , xk)
, (3)



4 edic

w

S

a

p
i
v
t
r
n
r
p
s

S

S
S

i

∑

w
t
p
o

b

r
c
c
A
f

r
i
f
c

e

w


i
m
t
p
p

y

H
a

4

fi
s
i
b
a
i
A

w
f
(
[
fi
i
S
a
t
I
d

Y.-T. Chen, D.-C. Tseng / Computerized M

here

MSR(xi |x1, x2, . . . , xi−1, xi+1, . . . , xk )

= SSR(xi |x1, x2, . . . , xi−1, xi+1, . . . , xk )

1
= SSR(x1, x2, . . . , xi−1, xi, xi+1, . . . , xk)

−SSR(x1, x2, . . . , xi−1, xi+1, . . . , xk),

SR(x1, x2, . . . , xk) =
n∑

i=1

(ŷi − ȳ)2

=
n∑

i=1

(β0 + β1xi1 + · · · + βkxik − ȳ)2,

MSE(x1, x2, . . . , xk)

= 1

n − (k + 1)

n∑
i=1

(yi − ŷi)
2

= 1

n − (k + 1)

n∑
i=1

(yi − β0 − β1xi1 − · · · − βkxik)2,

nd n is the sample size of predicted coefficients.
The partial F test value, F∗

i , given the importance ratio of
redictor variable xi with respect to all other predictor variables
n the prediction model. If the partial F test value of a predictor
ariable is less than the pre-defined threshold value, the predic-
or variable is redundant to the prediction model and should be
emoved. To avoid multicollinearity problem and minimize the
umber of parameters, the less important predictor variables are
emoved one after one. That is, we do not remove more than one
redictor variable at one time. The steps for predictor variable
election are summarized as follows.

tep 1. Based on all predictor variables in the prediction model,
we calculate a F* value for every predictor variable.

tep 2. Find a predictor variable that has the minimum F* value.
tep 3. If the minimum F* value is less than the pre-defined

threshold value, the predictor variable is removed from
the prediction model and goes to Step 1; otherwise, the
process is stopped.

After the model is defined, the prediction for each subband
s estimated by minimizing the prediction error defined as

n

i=1

e2
i =

n∑
i=1

(yi − ŷi)
2

=
n∑

i=1

(yi − (β0 + β1x
′
i1 + β2x

′
i2 + · · · + βjx

′
ij))2

, (4)

here β0, β1, . . ., βj are the parameters of the prediction equa-
ion, n is the sample size of predicted coefficients, ei is the

rediction error of coefficient i, and ŷi is the predicted value
f yi.

The prediction is performed in an order from the coarse sub-
and to the fine subband and from the left-up coefficient to the

g
t
p
i

al Imaging and Graphics 31 (2007) 1–8

ight-down coefficient in a subband. (The coefficients in the
oarsest subbands are not predicted.) For example, coefficient
is predicted, then its right-hand coefficient is being predicted.
fter all coefficients in the ith level are predicted, the prediction

or the (i − 1)th (finer) level is then launched.
After the prediction, all parameters βi for all subbands are

ecorded and the prediction errors eis will be encoded. To
ncrease compression rate, the prediction errors eis are trans-
ormed from real numbers into integers by the following trun-
ation processes,

′
i =

⎧⎪⎨
⎪⎩

0, if yi ≥ ŷi and yi − ŷi < 1;

�yi − ŷi	 + 1, if yi − ŷi ≥ 1;


yi − ŷi� − 1, if yi < ŷi,

(5)

here �x	 takes the maximum integer which is less than x and
x� is the minimum integer which is greater than x. In the decod-
ng, we can completely restore the wavelet coefficients yis to
atch the lossless property. The same ceiling operators achieve

he lossless restoration from the encoded integer errors e′
is and

redicted values ŷis which are calculated from the recorded
arameters βi,

i =

⎧⎪⎨
⎪⎩


ŷi� , if e′
i = 0;⌈

e′
i + ŷi − 1

⌉
, if e′

i ≥ 1;⌊
e′
i + ŷi + 1

⌋
, if e′

i ≤ −1.

(6)

At last, all coefficients in the coarsest subbands LL4, LH4,
L4, and HH4 are directly processed by DPCM transform and
daptive arithmetic coding.

. Experiments

The experiments on the correlation analysis of wavelet coef-
cients for choosing wavelet basis function, predictor variable
election, and lossless compression are reported. Fifteen medical
mages containing CT, MRI, and US images partially provided
y National Library of Medicine were served as the test images
s shown in Fig. 3. The image sizes of CT, MRI, and US
mages are 512 × 512, 256 × 256, and 640 × 480, respectively.
ll images have been re-quantized into 8 bits/pixel.
Every image was decomposed into four scales with 13

avelet subbands. Seven wavelet basis functions were taken
or correlation analysis of wavelet coefficients, which are
2,2), (2,4), (4,2), (4,4), (6,2), (2 + 2,2), and S + P transforms
19–21]. With the 7 basis functions, 11 higher-correlation coef-
cients to the dependent coefficient c are selected and listed

n Table 1, which are Parent, Parent-East, Parent-West, Parent-
outh, Parent-North, North, Northeast, Northwest, West, Aunt1,
nd Aunt2 as shown in Fig. 2. The higher correlation means
he correlation being greater than 0.001 or less than −0.001.
n Table 1, different rows indicate the different coefficients
escribed in Fig. 2; different columns represent the lifting inte-

er wavelet transform with different basis functions. In the
able, each wavelet basis function reveals a strong interscale
ersistence property in the parent–child coefficients and weaker
ntrascale clustering properties to other coefficients. Table 1 also
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Fig. 3. Fifteen medical images used for evaluation. CT1–5 are

hows that S + P wavelet basis function has the largest sum of

bsolute correlation values of coefficients in all considered basis
unctions. In addition to the correlation analysis, the experi-
ents on bit rate of medical image compression with different
avelet basis functions had also identified that S + P wavelet

c
l

t

mages, MRI1–5 are MRI images, and US1–5 are US images.

asis function is significantly better for CT, MRI, and US image

ompression [21]. Thus, we adopt S + P transform for the fol-
owing processing.

Based on the backward elimination procedure, the predic-
ion equations for coefficients in HLi, LHi, and HHi subbands,
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Table 1
The correlations of wavelet coefficients with different wavelet basis functions using the 15 medical images

Location Basis function

(2,2) (2,4) (4,2) (4,4) (6,2) (2 + 2,2) S + P

Parent −0.243 −0.246 −0.254 −0.258 −0.265 −0.270 0.291
Parent-East 0.004 0.003 0.005 0.008 0.005 0.007 0.006
Parent-West 0.006 0.004 0.011 0.003 0.012 0.012 0.027
Parent-South 0.010 0.004 0.011 −0.020 0.009 0.011 −0.035
Parent-North 0.011 0.011 0.016 0.009 0.016 0.017 −0.006
North −0.020 −0.025 −0.038 −0.067 −0.044 −0.033 0.201
Northeast −0.006 −0.001 −0.014 0.025 −0.015 −0.015 0.098
Northwest 0.004 0.006 −0.006 −0.004 −0.011 −0.004 0.025
W
A
A

i
t
i

a

y

w
P

T
C
W

T

C
C
C
C
C

C

M
M
M
M
M

M

U
U
U
U
U

U

A

N
p

p
o
m
T
q
a
i

est 0.110 0.118 0.157
unt1 0.001 0.002 −0.001
unt2 −0.003 −0.003 −0.003

= 1, 2, 3, were individually derived. For example, the predic-
ion equations for HL, LH, and HH subband coefficients of CT1
mage were individually derived as,

yHL = β0 + β1xP + β2xPE + β3xPW + β4xPN + β5xN

+β6xNE + β7xW,

yLH = β0 + β1xP + β2xPE + β3xPW + β4xPN + β5xN

+β6xNE + β7xW,

nd

HH = β0 + β1xP + β2xPE + β3xPW + β4xPS + β5xPN
+β6xN + β7xNE + β8xNW + β9xW,

here subscripts P, PE, PW, PS, PN, N, NE, NW, and W mean the
arent, Parent-East, Parent-West, Parent-South, Parent-North,

able 2
ompression rates of SPIHT, JPEG2000, CALIC, SSM, and the proposed
CAP approach in bits/pixel

ype Method

SPIHT JPEG2000 CALIC SSM WCAP

T1 1.45 1.32 1.21 1.20 1.18
T2 2.07 1.95 1.74 1.71 1.71
T3 1.88 1.73 1.57 1.48 1.39
T4 1.89 1.77 1.60 1.63 1.61
T5 1.46 1.37 1.34 1.24 1.23

T average 1.75 1.63 1.50 1.45 1.42

RI1 2.51 2.44 2.42 2.37 2.38
RI2 3.33 3.27 3.25 3.17 3.00
RI3 3.61 3.53 3.50 3.45 3.31
RI4 3.06 3.00 2.99 2.93 2.72
RI5 2.40 2.33 2.31 2.27 2.08

RI average 2.98 2.91 2.89 2.84 2.70

S1 2.93 2.38 2.22 2.04 1.95
S2 2.32 1.81 1.66 1.45 1.45
S3 2.79 2.29 2.11 1.92 1.87
S4 2.49 1.99 1.83 1.61 1.59
S5 2.78 2.22 2.03 1.79 1.78

S average 2.66 2.14 1.97 1.76 1.73

verage 2.46 2.23 2.12 2.02 1.95

a
C
p
s
m
c
a

c
i
z
f
W
W

c
m

T
T
t

T

C
M
U

A

T
a

0.186 0.168 0.141 0.213
0.050 −0.001 −0.001 0.029

−0.050 −0.002 −0.003 0.033

orth, Northeast, Northwest, and West locations relative to the
redicted coefficient as shown in Fig. 2.

The compression rates for the 15 medical images using the
roposed WCAP method are listed in Table 2. The comparison
f the proposed method with four famous lossless compression
ethods: SPIHT, JPEG2000, CALIC, and SSM, are also given in
able 2. Through the specific wavelet basis function and the ade-
uate predictor variables, the proposed WCAP method almost
chieves the highest compression rates for CT, MRI, and US
mages.

The five methods can be categorized into two classes: SPIHT
nd JPEG2000 are based on the wavelet zerotree concept while
ALIC, SSM, and WCAP methods are based on the prediction
rinciple. The prediction-based methods have better compres-
ion rate than the zerotree-based methods. The proposed WCAP
ethod has individually improved 20.7, 12.6, 8.02, and 3.47%

ompression rates with respect to SPIHT, JPEG2000, CALIC,
nd SSM methods.

All five algorithms were executed on a general personal
omputer with an AMD 1.1 GHz processor. The average encod-
ng/decoding time of five algorithms are given in Table 3. The
erotree-based methods (SPIHT and JPEG2000) have better per-
ormance than the prediction-based methods (CALIC, SSM, and

CAP). In the three prediction-based methods, the proposed

CAP method has the best execution performance.
The proposed WCAP method makes effective use of statisti-

al measurement; thus, it can successfully serve as an advanced
ethod for lossless compression on medical images; moreover,

able 3
he average encoding/decoding time of SPIHT, JPEG2000, CALIC, SSM, and

he proposed WCAP approach in second

ype Method

SPIHT JPEG2000 CALIC SSM WCAP

T average 2.3/2.7 1.1/1.0 5.5/3.5 6.8/5.2 5.4/2.9
RI average 1.8/1.8 0.8/0.8 3.2/2.4 4.8/3.3 3.4/2.1
S average 2.7/2.9 1.4/1.3 6.6/4.1 7.9/6.1 6.3/3.4

verage 2.3/2.4 1.1/1.1 5.1/3.4 6.5/4.9 5.0/2.8

here are two numbers in each field, the former number is the encoding time
nd the latter number is the decoding time.
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rogressive transmission technique can be integrated into the
roposed WCAP method to further enhance the clinical diagno-
is for telemedicine.

. Conclusions

Lossless compression for medical images has been investi-
ated by examining dependencies among wavelet coefficients to
mprove the compression rate. Instead of traditional approaches
elying on a fixed number of predictors on fixed locations, we
erformed correlation analyses to select a wavelet basis function
or lifting integer wavelet decomposition and launched predic-
or variable selection to obtain more accurate prediction models.
ince each step can definitely obtain an appropriate treatment by
tatistical test or experimental proof, the compression results are
xpected to be satisfied. Using the correlation analysis to obtain
proper wavelet basis function and applying the adaptive predic-

or variable selection to overcome the multicollinearity problem
ith emphasizing the wavelet inter persistence and intra cluster-

ng properties are the main contributions of the proposed WCAP
ethod.
CALIC [5,6] is a spatial-domain coder defining three kinds

f contexts for prediction and uses three prediction equations
or three successive steps of interleaved data prediction. Two
ajor assumptions are that: (i) the shorter the distance between
predicted pixel and a predictor pixel in a context, the higher

heir correlation; (ii) using pixels with higher correlation as pre-
ictors can achieve more accurate results for the prediction. The
avelet coefficients have stronger interscale dependencies than

he correlation between pixels. The proposed WCAP method
sed the higher-correlation coefficients for better prediction
n the wavelet domain. We firstly identify the wavelet coeffi-
ients with higher correlation; these coefficients are then used
o predict the specific coefficients. On the other hand, all pix-
ls participating in CALIC prediction are treated as predictors
ith the same influence degree to the predicted variable no mat-

er how far they are to (i.e., how much correlation it is with)
he predicted variable. Here, we only took higher-correlation
oefficients for the prediction to avoid the multicollinearity
roblem. Comparing with SSM method [8] using bit rate exper-
ments to obtain wavelet basis function, the proposed WCAP

ethod not only analyzed the correlation between wavelet coef-
cients with various wavelet basis functions but also referred

o the bit rate experiments [21] to identify which basis func-
ion is most compatible with medical images. EPWIC [9] is a
ossy coder in wavelet domain. EPWIC uses conditional rela-
ionship of a specific statistic model to achieve the coefficient
rediction, but EPWIC only use one prediction equation and
eems to be incompatible with CT images. The proposed WCAP
ethod adaptively filters out higher-correlation predictors for

rediction; moreover, we employ three prediction equations for
ifferent subbands. Thus, the proposed WCAP method can more
ccurately predict the coefficients.
Comparing to the CALIC, SSM, and EPWIC methods, the
roposed WCAP method endeavors to promote the ability of
rediction by exploring the advantages of accurate statistical
nalyses and data dependencies. We believe that a more effective
al Imaging and Graphics 31 (2007) 1–8 7

ompression scheme for medical images can be obtained if the
elated statistical analyses can be practiced prior to all processes
f compression.

. Summary

We propose a wavelet-based compression scheme with an
daptive prediction for medical images. At first, we analyze the
orrelations between wavelet coefficients to identify a proper
avelet basis function and the higher-correlation coefficients,
here wavelet coefficients are regarded as the predictor (inde-
endent) and response (dependent) variables of a prediction
quation. Then based on the higher-correlation coefficients, we
aunch the selection of predictor variables using a conditional
tatistical test to determine which relative predictor variables
hould be included in the prediction equation. The generated
rediction equations are then applied to predict most wavelet
oefficients except the lowest-resolution coefficients. Finally, an
daptive arithmetic encoder is adopted to encode the differences
etween the original and corresponding predicted coefficients.

In most previous studies, the prediction was generally con-
ucted with a fixed number of predictor variables at fixed loca-
ions. Actually, every kind of medical images not only has its
wn statistical distribution but also demonstrates different prop-
rties in different wavelet subbands. To achieve a more accurate
rediction, the number of predictor variables must be adaptively
djusted based on the image’s properties. Thus, instead of rely-
ng on a fixed number of predictors on fixed locations and only
sing one prediction equation, we proposed the adaptive predic-
ion approach to overcome the multicollinearity problem and
mploy three prediction equations for different wavelet sub-
ands to achieve a more accurate prediction.

The proposed WCAP method and four famous lossless com-
ression methods: SPIHT, JPEG2000, CALIC, and SSM, are
xperimentally compared. The experimental results showed that
he proposed WCAP method almost achieves the highest com-
ression rates for CT, MRI, and ultrasound images; moreover,
CAP has individually improved 20.7, 12.6, 8.02, and 3.47%

ompression rates with respect to SPIHT, JPEG2000, CALIC,
nd SSM methods in average. In all three prediction-based
ethods, the proposed WCAP method has the best execution

erformance.
The proposed WCAP method endeavors to promote the abil-

ty of prediction by exploring the advantages of accurate sta-
istical analyses and data dependencies. Using the correlation
nalysis to obtain a proper wavelet basis function and applying
he adaptive predictor variable selection to overcome the mul-
icollinearity problem with emphasizing the wavelet interscale
ersistence and intrascale clustering properties are the main con-
ributions of the proposed WCAP method.
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