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Fast Multi-level Successive Elimination
Algorithm for Motion Estimation in H.26L

Abstract

Keyword- H.26L Video Coding ~ Fast Motion Estimation ~ Multi-level
Successive Elimination Algorithm (MSEA) ~ Refinement ~

Half Stop Decision.

Motion estimation plays an extremely important role in the video
coding. The objective of the motion estimation is to remove the temporal
redundancy between video frames so that the motion compensated frames
can be coded efficiently.

H.26L video coding is the most efficient coding standard currently
available. It uses multi-mode with variable block-size motion estimation
to improve the accuracy. However, the conventional full search algorithm
will be a heavy computational load in this situation. To reduce the
complexity, we propose a fast multi-level successive elimination
algorithm (FMSEA) for H.26LL multi-mode motion estimation search. The
proposed method is mainly based on the combination of a modified
multi-level successive elimination algorithm (MSEA) with a motion
refinement approach and a half-stop decision that skips the 8x4, 4x8, and
4x4 sub-block motion searches. Experimental results show that FMSEA
is very efficient in terms of the computational speedup and video

reconstruction quality for H.26L.
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with ,v,x,y=0, 1, 2,...,7
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u,v = coordinates in the transform domain,
Cw)= 1/ \/5 for u= 0, otherwise 1,

Cv)y= 1/ \/5 for v =0, otherwise 1.

= spatial coordinates in the pixel domain,
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Rumv (x,y) =%% # & (Reference picture) % (x,y) =%
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#7¢ (Arithmetic Coding ) % ¥ 5 H.263 & & thv % & B % #5 ( Variable
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2.2.7.3 &pFTE PRI (AP mode)

AiEBERE?P HEY DL RS A FE (Overlapped Block
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FRH263 26 0 69 & 1998 & > MF LG gk (TUT) ©
B4eF £ 4] 27 - a8 > H.26L(Long Term)[S] » 2o ’F?%—”ﬁ "
T M
o
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R EY (6]
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2 A BRI X 2 G SR AT LR .
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T
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B 45 s B a0 3 it (Complexity scalability in encoder and decoder)

nh

'(?m

WER DR R Gl R R > FIOT Y ant B e
—'TSFA'\ °

=

£ 3 B 145 i # (Error Resilience)
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Variable block size WVariable block size
PSNR 4 (16016 dud) + (16x16 — 8x8)
[dB] quarter-pel + (H.263, 1996) _ Half-pel
multi-frame quarter-pel maotion -::(:.'r[:c:-n:-:;ﬁh-::-rl
40 F motio n compensation motion compens: mc:-n (MPEG-1 1903
{H-26L, 2001) (MPEG-4, 1998) MPEG-2 1994)
BT \ﬁ/ / /I/
o Foreman
36| Bit-rate Reduction: 75%
35 smuneny u P 10 HZ‘ QCIF
24 ;ﬁgjram es
32 Integer-pel #
maotion \
EOMpens 11cn
30 (H.261, 1991)
Intraframe
28 DCT coding
(JPEG, 1990) Rate [kbit/s]
0 100 200 300
Figure 2.13 AR %% E 1 £ B
From Thomas Wiegand, Heinrich-Hertz-Institute Berlin
R

d Figure 2.13 ¥ - PARAREFIHREF E L > & )
Intraframe DCT coding (JPEG, 1990)

Integer-Pel Motion Compensation (H.261, 1991)

Half-Pel Motion Compensation (MPEG-1, 1993; MPEG-2, 1994)

Quarter-Pel Motion Compensation(MPEG-4, 1998) + Variable

Block Size <16x16 = 8x8> (H. 263, 1996)

® (Quarter-Pel + Multi-Frame Motion Compensation + Variable

Block Size <16x16 - 4x4> (H. 26L, 2001)
A 1990 & > &% ﬁ?ﬁﬁ%ﬁ@f{ﬁ » # % JPEG - %R 3%k B K in
B 4g > i¢ k3 H.261[1]* Block based matching Integer-pel motion
compensation > ¢ Figure 2.13 # L2 | > W EH & v HiAE R

. £ - - 3 D L P2 - 2 B 22 2 2 7 - L
FPNE- TR G &EFTLT o RS Lw g Mg
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30%-40% - @ ¥ 7 1993 -~ 1994 & i MPEG-1(VCD) ~
MPEG-2(DVD) > £ * { Hmr#d35 iz > frwd 12 % 4 ¥
2 EP SR 98 & MPEG-4[4] & # wF| 1/4 th% >

fﬁf{‘ﬁﬁ"fi’_;‘»ﬁ‘ vt JPEG f&‘rﬁ“é %75 50%-60% > o 14 b ARG R
S B AL VRN R 2 LR BT BIRE 2 Rais
O REBRABRFACLETI RS o ¥ - 2 6 0 FRIOF D
BHAEL (1616 3 8x8 & { /] chdxd) AFT I R
16x 16 { R b » ¥ M BRI TLE  we AL E ] %
Bogedd o Flo e &g B GAN - M LT st Ap e
10 ek S o) R LRSS 0 ffie & - & Rate-Distortion[8][9]
¥ 4]4r2 7 ¢ 1/4 Pixel 7 motion compensation ° ,T*uiﬁx A A
H. 26L ehfk + o 5 & £ 3 &R ey ﬁﬂm | Mo 2 £
WAEREG I3 F e o VP H - BIORASE RS
Heen > FFu] E 3 Fh enB P o 2%k BdF 0 A1 H26L =

2 g 1% JPEG BHgindrt » & a5 MG T5%:him R 5 o

Figure 2.14 £_H.26L F %8 en7f B > 11 F TI*UE-E 44 % H. 26L
B HEEEA L A BEVER o € RYpRBEVER > PR
¢ ¢ % Intra/Chroma/Inter prediction mode ~ Transform coding : 4x4
Integer Transform ~ VLC : Universal VLC -~ Zig-zag scan
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/Quantization ~ Motion Estimation : High/Low Complexity °

Coder
Control Data
' * ------------- > \

\
\

Transform/ P \
; Quant. Transf. coeffs \
\

I 1 \
} v \

L _ E_ --o-P Deq./Inv. .
! <
E Entropy
[}
|

Motion- - N
Ny
Intra/Inter Compensated

> Motion Data

Motion

Figure 2. 144830 % % H.26L %% 1 [

From Thomas Wiegand, Heinrich-Hertz-Institute Berlin

2.3.1 Intra/Chroma/Inter g |43\ :

2.3.1.1 Intra prediction mode:

Au G 4x4 2 16X16 B AR H 0 dxd X G 2 B oS

(Mode) » 4 %] £_:
I A B4C D
0. DC
1. Diagonal Vertical 22.5deg Ela b cd
2. Vertical Fle f g h
3. Diagonal 45deg o ‘
Gli1jJ k1l A
4. Horizontal
5. Diagonal Horizontal -22.5deg Himnop
Figure 2.15
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Intra Prediction mode €_f|* H % ¢ j2R&5if% » ¥ Figure
215 ¢ * B A-l enifE » 2R 151395 Figure 2.16 1 B> o > % ?’“‘E‘E
T B RAERD I EIR- B F RPN B RIFH DT R

AR

Mode 0: DC prediction
AN A4 o (A+B+C+D+E+F+G+H)/8 > 3

_%j:E’,/\ fﬁ;g\bﬁjli;tgiyikly IJ'H’ ﬂ'bli;jf_é;’l)é"i /J~:€% \

apng\—%m’-ﬂ‘f ;‘f“fm}ﬂls’-i,fsﬁyg%ofﬁ

FRHL DA 2D e BiRE IR «i,)rgira
Figure 2.16

TR g BihEERTIHLpRE 2 e

*"‘FK/;» {*?* 128 & 4p it -

Mode 1
Mode 1: Diagonal vertical 22.5deg I D
E|a d
a ¥4 (A+B)2kFgip|ee - h
G|¥1/k 1
e 4.4 BRIgR H|m op
i & (B+C)/2 k3gip| e o Figure 2.17
f,m {E’ CX;E/E'JE’?JO ITABCD
Ela b cd
c,j €4 (C+D)/2k3giplen o Fle £ g h
Gli g k1
d,g,hk,ln,o,p &4 D*XIgipn Hlm n a p

d Figure 2.17¢01 & Bl ¥ & I 2 P Arfat e e
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Mode 2: Vertical
Vertical mode — & 7 <~ B A-D % Fle B2 o d Figure 2.18

AELET S I AacAe A A-m I A E BTG 0 B

v 15 (B~ C ~ D) ik ot 44t -

Mode 3: Diagonal 45deg

Mode 3
b c*d
in #d (GH2F+E)/4 kg ip|eho ex gh
17 1
mno p
€,j,0 %_d (FH2E+])/4 Kk 3E Pl o
Figure 2.19
afkp Zd (E+2[+A)/4 K 3P| e
Mode 4
b,g,l .4 (I+2A+B)/4 k3g Pl IABCD
Ela b erd
o Fie—£f ¢g+rh
ch . d (A+2B+C)/4 k3giplern o oftg-kel
H 1ot p
d .4 (BH2C+D)/4 kg iplero
e ) iR Figure 2.20
d Figure 2.19¢771 & Bl ¥ & i I 2 P A1t e e Mode 5
Mode 4: Horizontal LV
a_bgc_d
Horizontal mode - % & 3 +~ B« E-H % Flw 9
k1
. N P H
2.-d Figure 2.20 7+ L. B+ ¢ ¢ /* E-a~E-b~E-c- =
Figure 2.21

E-d @5 408 &7 %M 20 ehE[BC D)kt 4

-
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Mode 5: Diagonal horizontal -22.5deg

a .4 (B+F)2 % 3g R o

b &4

c,e Z.d (F+G)/2 k3gipleho

fd 24 Ghigplo

Lg &4 (GHH)2 k3gipeh -

h,jklmn,o,p &4 HKIFR -

d Figure 2.22 ot & B ¥ £ 0w P ot ene

7 b 16x16 F BG4 BB

1. Vertical
2. Horizontal
3. DC prediction
4. Plane prediction
P 4
F* ehPpisfe 4x4 ® B> JE -
P(-1, 15)

®o RE AT e BHN  EF anbrk

73 58 T BT B N3

Where:

Pred (i,j) = [a + b(i-7) + ¢(j-7) +16]/32

e a=16x[P(-1,15)+P(15,-1)]
b = 5 x (H/4)/16
o c=5x(V/4)16

8

1,-1)

1}15, 1)

Figure 2.22

® 4 =) ix(P(7T+i,-1)+P(7-i,-1)

® - (P17 )+ P(—1.7 — )]
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Mode 4 &% — BIERIDE A o 4000 B8+ i e
,T%fié%\' 16x16 % #.¥ cnX~Y #ha~b c~HFfr V Ziz i mode

2.3.1.2 Chroma prediction mode:

% Figure 223 ¢ > SO~S1~S24-S3 &2 & At » 23 Bt
P ~Cenz > BT B L dede R F T 20 E SO~ S1~S2 e
S3 AF”ST# [ERzzE

A= (S0 +S2+4)/8

B=(S1+2)/4 S0 S1

C=(S3 +2)/4
s2| A B
D =(S1 +S3+4)/8

£ 54 8240 S3 i hehih

3| C D
A=(S0+2)/4
B=(S1+2)4 Figure 2.23 Chrominance ¥ .
C=(S0+2)/4 TERT R
D=(S1+2)/4

F 5 F SO4r Sl & teeind o
A=(S2+2)/4
B =(S2 +2)/4
C=(S3 +2)/4
D =(S3+2)/4

B fd o dok B g e BHR7 A A=B=C=D=128> it # A~
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B C oD s bl o SRl B84 R LR @ 08 £ 5%

2.3.1.3 Inter Prediction mode:

t Intermode ¥ 5 3 - fAF PR S ) F U KA HAT K
otion Compensation) > # # # — i# Macrobloc ) ik I B @
Motion Compensat H ¢ 4 - B Macroblock *# 7k B,
77 1~2~4~8: 16 Bi=#w & - - & Macroblock 4~ = -| e+ %

e 3% 4e Figure 2.24 #1757

Mode 1
One 16x16 block

(one motion vector)

Mode 2
Two 8x16 blocks

(two motion vectors)

Mode 3
Two 16x8 blocks

(two motion vectors)

Mode 4
Four 8x8 blocks

(four motion vectors)

0

0 1

Mode 5
Eight 4x8 blocks

Mode 6
Eight-8x4 block

Mode 7
Sixteen-4x4 block

(eight motion vectors) (eight motion vectors) (sixteen motion vectors)
ol1l213 0 1 011]2]3
2 3 4151617
alslels 4 | s 8]9]10]11
6 7 12|13[14(15

Figure 2.24 Inter coding 7 % #4558 7 & B

/!

ey

AT R B0 B R B B LR R 14

—
-

T - BETEGOER R 6B EHTEAT LRS-

i# Macroblock » #7r f AT & * FR— fFEHN 2 w0 0k B Jf BT R T
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FrHegaz1id T8> R4 NED KA F gk o
D| B C
A

@ AFALEFRHSNIIIL RHRDEHw E
®@ BIALE®RHKSNIZIEIFHR I E
@ CEIIM¥LEMAMLFEFH DB T
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Figure 2.25 Inter coding %3 = & 77 &,

?@

4y

RS R ORMARF R A b E B REATH I DS
T 0 € R F TER] o Aok BB » A5 4x4 ~ 8x8 & 16x16) 0 ¢
f|* ANB~C~DB?® Figen> 2> REEBRLE > EFTHG - H

£ AB-C2Defe RREARY g BT EF 35 b

2
1. &% A% D n:%%r‘%i‘ﬁﬁ% = ’&.’3]%-‘;}‘3‘32'5 (Rl S A
B & 0
2 %%D‘BKCgﬁaﬁﬁ%ﬁ+’ﬁ V%AW
He g o

3. Wk Ciz#e iR T’;cér_,%}g,? DB Co
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4x8

8x16 16x8 -
B
-
A—» * J——e .
—>
Figure 2.26 Inter coding %% = & > & 77 % B

F R HA L (816 ~ 16x8 ~ 4x8 2 8x4) 0 kAL g B it

3R R i&éﬁﬁiﬁ— 12 Figure 2.26 K1 o
8x16 ¥ H. :

LE R H 2

|~
)
3\
>
K2
S
9
g
4y
‘f“\
\—3 .
=
e
3
el

AREBifeEk- Bho SIS M gHRY ACB-C oD

8x4 % B, :

X B9 d AR LY AT ABACoD s w R B
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2.3.2 Transform Coding
2.3.2.1 4x4 Integer DCT Transform

7 % 4_Intra & Inter mode> 7 4 73t 54| * Integer DCT (&L Figure
227) £ FMEN BAEY o U iAol - 89 DCT > 7 fe enE T
bR PR o A fRE R E D R R g R e e :éﬁ,?u% ¢ A
4 Mis-match £5% % o i 4 DCT #3370 £ e 8x8 Ha b > drd
EH A4 BH  FEMRAERE i RR T A e

g D - b Y gS R o

A=13a+13b+ 13c+ 13d a' = 13A + 17B + 13C + 7D
B=17a+ 7b- 7c¢c-17d b* = 13A + 7B - 13C - 17D
C=13a-13b—-13c+13d ¢’ =13A - 7B - 13C + 17
D= 7a-17b+17c- 7d d = 13A - 17B + 13C - 7D
1-D Integer Transform 1-D Inverse Integer Transform

Figure 2.27 1-D Integer Transform and Inverse Transform
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fI#* - EenInteger 3 > ¥ R T enffd F - o L dE 0
GF - o TE EDEHEES D Beniilice m F ks £ R

W RpIE s P EF EED AE I LT 9676 B(ex.a' =676a) o

2.3.2.2 2x2 transform of chroma DC coefficients

z_7v 4x4 Integer &+ ¥_* {4 % & (Luma)t > H.26L # %] 5 7 & &
%7 B (Chroma)® > & > LRI by > 2 & U2 Vit i
3 4B DCE-H#2&2p 43 DCERE - > a5 2x2 transform

for chroma ( L Figure 2.28 £ Figure 2.29) °

Luma residual coding 4x4  Chroma residual coding 4x4

block order block order
U \%

0| 1]4]s 1 1 2x2DC
6 7

213 6 | 7 m
[ U

819 1 1 1

213 &8\ 9 AC
I
1 1 1 21212
0 1 4 15 1

Figure 2.28 Luminance and Chrominance %% T & B
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1-D 2x2 transform for DC Chroma 1-D 2x2 Inverse transform for DC Chroma
DCC(0,0) = (DCO+DC1+DC2+DC3)/2 DCO = [DCC(0,0)+ DCC(1,0)+ DCC(0,1)+ DCC(1,1))/2
DCC(1,0) = (DCO-DC1+DC2-DC3)/2 DC1 = [DCC(0,0)- DCC(1,0+ DCC(0,1)- DCC(1,1)]/2
DCC(0,1) = (DCO+DC1-DC2-DC3)/2 DC2 = [DCC(0,0)+ DCC(1,0)- DCC(0,1)- DCC(1,1)}/2
DCC(1,1) = (DCO-DC1-DC2+DC3)/2 DC3 = [DCC(0,0)- DCC(1,0)- DCC(0,1)+ DCC(1,1)}/2

Figure 2.29 Chrominace DC Transform

D
e Ly Y
/S TS /

9—>10 14—>15 4 5 6 =7

Figure 2.30 Simple Scan Figure 2.31 Double Scan

2.3.2.3 Zig-zag scan /Quantization
Simple Scan & * #HpF 4% 7 Intra coding % & (luma)QP<24 #73%

B2 ¢h ok xegnd b A5 50 L Run Length Coding » 4 Figure 2.30 -

% 4 5i¢ * Simple Scan - & Inter blocks fr Intra blocks (i¢ *
mfet QP &) 4% VLC pF o A Fehf g k> % - B =~ b
EOB(End of Block) & _#if & # i o & & 4x4 F B Intra coding ¥ >
Tia¢ 5 - Bt 227 0 Coefficients » #7141 % — B >~ 4 % EOB >
Foa et b ket o D0 R RN - BAD s - B Axd PR A

¥ ¢ * Double Scan > 4 Figure 2.31 o
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QPiuwma 01 23456 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Figure 2.32 & i* ¥+ P& %

AEMEFE VB > ERAEY AT QPLym IR At X
FEch s @ £ & B Step Size 14 12% 3 4v > 5 2 0 F 34 QP B &
+ 1 Stepsize 2. {6 » QP ERFEEW R L — B o £ 1 Fuey A ¥

e1 Dead zone =77 ;N E it o

1
TAALR DG F R R A R Oxl
0x;0x1
FAOREF ELSR 0 #T Ee QPorvoma 0%0x0x1
0x30x,0x;0xp1

317 2018 0 F2EZ TR N EL

Figure 2.33 UVLC 7+ % B
Figure 2.32)

2.3.3 VLC : Universal VLC
UVLC[7]F M 7™ % 3 Bk
l. %f2m3 — TR0 32 FRLE B

2. T IS e 4
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i‘fﬁ‘g\)i * XX Xy, ¥ M {OE\‘{I > m %‘Xo X1 X2X3‘§,E'_L\Q§Ii57:

g i F AL R 2RA 0 RER Y EBS

BT J’I&{xile
Code_number = 2"?+ INFO -1 (L/2 ¢ #|%7 & % % % - INFO ¢ 4y foi&

R LA S5 o ",/TT T A L=1pF > INFO < F& 3% 0)-
BT AT LT b T SRS £

- B Tf_;ujj‘%;”ﬁ 0'FF 3B laEFNm  7RAENEG &4 ket
b Fihig 4 e

2.3.4 Motion Estimation : High /Low Complexity

|k

] H.26L AR 45 & m@é{ﬁ}% B oo A et BAFRRR > AT

N 3, > v 2
N o

2.3.4.1 Low Complexity

MAFRRR 0 L RS TR A R S T o
HF w42 > P 424 5 Intra 2 Inter & BIRi> ©
Intra Prediction mode
Intra 4x4 mode decision: [Dc,Hor,Ver,Diag RL,Diag [LR,Diag 45]

4e b qp E%*24 7| intra_sad 5+ & ¢ > 1 & § % 7 4 Inter

prediction mode ‘'t ik > F A £ Intral6x16 't #ix > F & Ao gt

T8 o
= #-7 4 Mode * 1 16 B 4x4 HH. P o
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1. FRIE BT RGN 2 ) FERIRAHER
fren B IR > X3 )
QPO(QP) x Order of prediction mode
order of prediction_mode & % Figure 2.34 » & ®
p R AR A = AP AR R B SURE o
il. ‘v k& — i block ¥ R Ef-R B EApFATE
SAD & o
i, & 16 B RBATE D R SAD EArds Kk o
iv. RSB Ax4 BHAGE L T AR R
(current intra sad) o
w A - BN 218 0 fr 16x16Intra mode Vi o

= 1T R AR ROES - B AR R R G .

B\A outside 0 1 2 3 4 5
outside 0----- 021--- 102--- 201--- 012--- 012--- 012---
0 045--- 041352 104325 230415 304215 043152 043512
1 045--- 014325 102435 203145 032145 041325 014352
2 045--- 012345 102345 210345 302145 042135 013245
3 045--- 304152 310425 231054 304215 403512 305412
4 405--- 403512 401532 240351 430512 403512 405312
5 504--- 540312 015432 201453 530412 450312 504132

Figure 2.34 Intra Coding 3" % ¥ %

Intra(16x16) mode decision : [Dc, Hor, Ver, Plane]

n AEw R 16x16 ®HAF 0 AR IER|IZ (6P SAD &
¢ * Hadamard transform - (¢ ¢ 7 16 & % #. Hadamard
transform 4= DC Hadamard transform)

= P~ MiniSAD Mode % # 16x16 efic;¢ o
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m % 16x16 % H. 97 F 0 tot intra_sad2 -] 3t 4x4 0
tot_intra_sad 3B 4% 16x16 # ReiRizo B RIBRAE -
*h| A 4Ax4 AT g 0 H R 16X16 B B g o

Inter mode decision : [copy,16x16,16x8,8x16,8x8,8x4,4x8,4x4]
= 4e b gp E*min(ref,1)*2 ¥| Tot inter sad i & &_3 7 5P|
5 3% % m m & 3+ Weighting o
* Inter mode (7 i# mode, Integer search - half pixel ~ 1/4 pixel)

i.  Integer search(¥ H_H 4 ih* SAD &k & # 2 5

* Haramard Transform)
1. Prediction biased (not center biased)

2. Motion Vector cost
(SAD+qp*MV _usebits > 4% F_i8 T
16x16 ¥ ¥ candidate=(0,0) > 3 qp*16)
ii.  Half ~ 1/4 pixel search (3% i+ option ¥ 7 £
Hadamard » i& % 2 {130 & * )
. 23x% Fla~ B> L Figure 2.35 -
2. Motion Vector cost( SAD+qp*MV _usebits
4% F318 7] 16x16 * candidate=(0,0) »
4 qp*16)
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6 d7e 8
fgh
G H I

Figure 2.35 Interpolation -+ %, )
2.3.4.2 High Complexity

H26L 2 7 0§ Meniz & E 3] { F

-~

ey
=3
g5

P
=
=
Sy
iad
W
3\
S

Fg 0 MU AR H i AR
Hig* i€ & cd % &2 & {o42 & ¢ SSD(the Sun of Squared

Differences) * %2 Rate Distortion Lagrange model °

Initiate the parameter (Lagrange parameters)

1. Intra mode decision

OP/10 _(QP+5 )
34-0P

/IMODE,P =5-e

2. Motion vector (Inter)

_ [z, opi20  [opP+s
/1M0TION,P =+5-e 34-0P

Intra mode (4x4)

= % SSD ¥ 4x4 7 f& % HALN ¢ eh4 E (Distortion) & 0 i
d Bl end BE o R A& 4x4 RHBC o
= B R HTE ISR EHN(Y S U 2 V) st

> L o
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» Lagrange Intra_mode decision 3k } %= & % B\ 918

L L 2.

Fleniz > F 4t % SSD #rE dlenk B oo
frf v e Intral6x16 % Inter mode ' $& °

Intra (16x16)

RGN 07 JE § 4 Low complexity — %

n R THIRBH N Y(luma) U 2 Ve

B S 0 K g mode* Lagrange Intra modetY ~U-~2%2 V
sr1Rate*Lagrange Intra mode( P 4 _& f-H ¥ ntra 4x4
% Inter mode ** §i2)

Copy(/ £ ek 5 %hiF)

= 5 H YUV SSD( % 3% Frame)!/ ji- 3 % vh— 3 o

= RS2 s (F AL E A | Fmin_rdcost ,T‘C»IPJ“‘I'Jﬁ T e
mode 3.)

m BF T K grmode* Lagrange Intra_ modetY U~ %2 V

«71 Rate*Lagrange Intra mode( P -%_& §r Inter mode +* )

» Inter mode (7 modes)
= tot inter sad = (int)floor(rdopt->lambda motion *

(1+2*floor(log(k+1)/log(2)+1e-10)));

= v Low complexity search 7:E 42— &
= R (Y~ U~V FEALEE ] o min_rdcost ,Tﬁlfrr)‘v‘I'J

H ¥ errmode 2 )
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= B % M J) K dhmode* Lagrange Intra mode+Y U~ %2 V
¢11 Rate*Lagrange Intra mode
24 H26L i seR A 45
THAIT LB AR KPE AR T G ehgficid
* Intel VTune Performance ip| & #c %8 % P 2% o
R OTR B
# * Pentium III 733 & 1} 4| 7 %

RAM 128M

H.26L %-# (Reference Software: TMLS.0)

iz * Sequence Foreman
Image format: QCIF
Frame Skip 2 (i, + 100 3& Frame)

Hadamard transform: Not used

Reference frames used in P prediction: 1
Sequence type: IPPP (QP: 1=17, P=17)

Entropy coding method: UVLC

Search range restrictions: none

RD-optimized mode decision: Low Complexity
MYV resolution: 1/4-pel

Blocktype: 7 modes
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5% ARSI 4

%

1%

B motion estimation
B MakelntraPrediction
[ Interpolation

O Others

Figure 2.36 H.26L #4845 e & =% B

d Figure 2.36 ¢ 4+ B ¥ 5 1! > Motion Estimation 3 7

AZ_4 L= m@‘{ﬁfﬁﬁ? » B v 3R> 4 % & Interpolation | A4 2

2 > Intra Coding(MakelntraPrediction)f 4~ 2. — » # ¢ ¢ Z Integer

4%
30%&

6% 3%

7%

T1%

O SetMotion Vector
Predictor

O Setup Fast Integer
Search

O SetLargerBlock

O FastInteger Search

B Half Pixel Search

O Quarter Pixel Search

Figure 2.37 H.26L = #5 % 3 4F S & 3% 1% B
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DCT ~ UVLC %5 % 7 A 2 = -

EF j"F:] Motion Estimation 1+ 38 > d 4235 ¢ &0 Integer
Pixel Searching . ¢ 7 & B> - £F L R4 0F & F 7 F4x4
¥ 47! SAD R v A3 ) % (SetupFastIntegeSearch) £ 32
4x4 F B @ & 4= Kk (SetupLargeBlock) » I * £ - i+ fi2
(FastIntegerSearch) > 4, & it 7 | 4 2 ~ -+ ; Half Pixel - Quarter
Pixel 4 )ik 7 F & 2= 3|~ o

“rl H26L 88 5 3 mfﬁ‘{ﬁfﬁ e Hagse kR < 3 0 [21][22] 0 &
EXIlafeTrE Ryt g > vt £ 2L A& Motion
Estimation * 5 & P-i# j§ 8 /% > 54 L AH2 7L Na- 22

ER N RN LR i
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'3:.:_:3_- } ﬁ L‘lﬁﬁlpp /ﬁ-ﬁr/z{?s?ﬁ

> #% fz 3+ (motion estimation) # 12 = #54T iF 5 A A AR K fB
gt LA LR gEd il F §07 % B g (block-matching) &7
ORI TR R B R AR - kR OFER(T- B
frame) » L #- frame & &) = — B B 16x16 chF B » ZR{6 £ U BB 5
Hrksype B ® o =#HwE 4 current frame 5 A% > 7
previous frame F L% B (£10)P > 5 F D B FHITFEAL 5] D%
B R %S B frame g E4p R FTE B o c AP FEE-H
w £ il AR 0 AN PHL S 0F 7 B 2 (Search Algorithm) o 2 w0 #r33] e5
Inter $-5% T H izt en=> ;8 d previous frame X ¢ /P| current frame > 14
BT HE i e
" R BHOR BB HF B2 (Full Search)h o A oo B ¢
AR b i AR R 0 A A L - A 1)& 4 2 (Lossless)
Posd A B B 2 Bldeid SR B2 (SEA)[10]
Poig M BIEF B bldez HIEEFE E[13] -

-

2)%4 E (Lossy)

AAZEHBGIFEZ ALEJIFHT N RBRTEMRE
SAD(Sum of Absolute Difference):- & & » H #7{8 ehiz ~ & 2 PSNR &
fr2BF RV HFEZ 2R 0 T8 BB aud BT Pd 5 e o
fe w0 € @ doid ek ko L A BT 6 R
B AOPER o A E 45w 8 > 2 & 4% Uni-model Error Surface
Assumption(UESA) > :Ié’s-:f%%*% Fle FH5) B35 B nF - B
% 3 8 | i (Local Minimum) » = ,T}u H_> % a5 ] & (Global

Minimum) » f& % F F & 2h4opt > rr ® pogEem B0 s 43S I vk
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F2F PECBEIFREZHEA

Fod FEREOR ) EOMTUEGERERA BL D EEERFE
P R 2R EHIPE RS E i AF AT g RFE
Az o

4= AL 35 KB A
3.1 # }i‘ i 'p LiwE 2

AP R BT A A B P A L2 B R o e et

-~

|~

=z 5 - B T LR WIEERFE R F D KGR B A A
Tl £ o 2EHF RO HIF Y 2 (Full Search) & 8 f s ~ &
fH eh- f& AP d 3T 2B IE T L HIF B 2 % current frame
block s — 2L 27 previous frame search area % — ZL#GE & > F]* Full
search 7 F| A B fFmaddF 2% > 8§ L ok srfionibx pr
70 2 1% o

Bl B R T LA R & - B R R E D EAR R B
AR A L Pl O GRS R A
3.1.1 @%‘zﬁ“/f % & 7% (SEA)

@ “f /% & 7% (Successive Elimination Algorithm)[10] % 1995 &

;?%1

B VTV UREC PR FHVEFEZARELE O RET Y
TR ArREE L HIFE AR R R R TV E UF S L R R
B 5 5L e 1t (PSNR) e -3k i & 2 » B|4c = # #F (Three Step
Search) ~ 4% 3% (Diamond Search) ¥ & » { 4ew 3l A % - H 3 &

AT LT N T

N-IN-1
SAD(m,n) = Z| c(i,j)—s(i+m,j+n)]
i=0 j=0 1)
N IN-1 N-IN-1 (
| c(i, j) | Z | s(i+m,j+n)|=K-SB(m,n)=Sum Norm(m,n)
i=0 j=0 i=0 j=0

(D87 "KE&2p o ®EH? 75 fF 2% ARfr> SB(m, n)i* £ &

FFH ¥ (m, n)iFiE F B2 T F R oo HE BAEF 2B (m,
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n)m % » 3% Sum Norm(m, n) & " 3+ & SAD(m, n) & & % » ¥
SEFHEEEmM )R FEFEKE- K@ SB(mn)¥d L
&% 2. SB(m-1, n)f 4! 5 4o(2)9757 ¢

N-l N-1
SB(m,n) = SB(m —1,n) + ZS(I’I’! +N-1,n+a) —Zs(m ~-Ln+b) (2)
a=0 a=0

4% Sum Norm(m, n)+* & 3+ 5 &) &k c9 SAD © 2_ %] & SADpy, B
< g o d (1787 %3 SAD(m, n)— Z_* Sum Norm(m, n):& ~ » F]pt
#ZF =% (m, n)sh SAD 3+ & )I*uv g E s EB R v 2t SAD(m,
n) o %&RE > Aok - F#“ﬁp,?u cH#Fe B3 (TR AR R 0 -
F!Hru]* — ] 9 SADpy B 0 RIF LR R IOFE T E s g 0 G ARih
GEEE T F R BRI AL - AT AR
B R OIERTE R F - BOEEF R OGFRRETE 22
P32k gEie Ben? i ¥ AT & SR
(Spiral Scan) > 4= Figure 3.1 #7771 > kB~ @ 2ok 4 5 pe (Raster
Scan) > 4r Figure 3.2 #7775 X » F E 1t ﬁﬁ%@éﬁi’é:’!:}fﬁ%l}] ;
@ﬁ/ﬁxff FEZHEF R DM A T 5 T f LI REHE
w2 EE PR 2B OF LR E 2R L A > Figure 3.3 A

Fop g iw B ix i Aem
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|

Figure 3.1 % 25\ & Figure 3.2 1§ ;\ #=&

!

Calculate Sum Norm (m,n)

SADyin > Sum Norm(m,n

Yes

v v

Skip search Calculate
position (m,n) SAD(m,n)

SAD,in >SAD(m,n)

No Yes
v

Update SAD i,
v \ 4 \ 4
Update (m,n) for next search position

Figure 3.3 i@ i ' i & i i AL ]



FIR PECBEIREZHEA

3.1.2 5 rg R s §'1ﬂ L N ES
Ry Aﬁ»{f 7~ 2000 & F 5 RER W “,‘f w8 % (Multi- Level

Successive Elimination Algorithm)[11]> 2 RIZ 5 #E(1);8 2 5 T 5] %

54
N-IN-1
SAD(m,n) = | c(i, j)—s(i+m, j+n)|
i=0 j=0
L-1
> Y | Kq — SBg(m,n) |= M Sum Norm(m, n) 3)
q=0
N-IN-1 N-IN-1
> | (i, ])\—22|s(l+m j+n)| =K —SB(m,n) =Sum Norm(m,n)
i=0 j=0 i=0 j=0

HY > — B NxXN Fspts 2 LBFHRE K, A2 EDw FHP
¥ q BF wBP AT fE 2% AR e SBy(mn) A A 40F = ¥ (m,n)
3+ 5 41 M(Multi-level)Sum Norm(m,n) > 4=% MSum Norm(m,n)+" 3+ &
11 % 1 SAD ¢ 2 B & SAD 4 0 d (3)5 7 2E SAD(m,n)—
' MSum Norm(m,n)i® = > p 28+ * SAD, B+ > Flpt¥Fx =%
(m,n) =7 SAD(m,n)*+ & ,T.%'p" AL B E R v sE 35 SAD(myn) o
pteb s od (3)78 A i w g I MSum Norm(m,n) * 3% 8¢ & »% Sum
Norm(m,n) » Fl4* » edp b cdf g BA T > 3R @A 2T Lk
- HRRRAY AR OER R EE b R BB A0 E &
kR S IEA @%ﬂﬂ“ﬁ HEEEE R gkt F A 50%~90% »

SEE R R eI A 6 A iRt 2 A e g B e ek b b
Pl ERERE LY EAE R R E BB E TR

sE A AR P o 2 IR o
e w2 P AR E g e ST % 24
F > © & # Figure 3.3 » ¢ Sum Norm(m,n):z = MSum Norm(m,n) ="
R S Y AT EEE SRS EE ST e
% §F AR Rl
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TR EBREREEGA

3.1.3 - BILP T BT 5 2 (1D-Projection)

15 15
MAD(dx,dy) ="' ICF — R 357
i 0 :

—r

256 operations

P X,y

PMAD(dx,dv) =S

16 operations

Figure 3.4 — R BP0 47 & 2

M. Brunig 7@ = 2000 # 4% &' - #I B T B R B2 [12]
HRpamd TREp

B,—1B,-1

MAD(dx,dy)= Y 3 |Cz — REy |
i=0 j=0
Bh—l B,-1
Ylcy = Ry >Z\ch’y PR;™"*"| = PMAD(dx, dy) (4)
—0 j=0

Hoorg % ch F o3 & B - B NxN hblock ¥ ¢h— £ {7 Column
AR A FER PP F o et T kihliciE A~ B 2 PCY 2
PR Y, fgﬁq.w o Ba RS- BRA S FMEFE
¥ v 4 Figure 3.4 #77 » £ d (4)% ¥ F I8 02 & SEA i ¥ 32 @ N
3 E N v IR AE - B Column #afp4em 2t— B Block » F
ks ¢ B P e SEA FE 2 h TR 0 AT A dn iRl 8 F i E
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3.1.4 %> % Bt ¥F 8 % (PDE)

4 & F4]* 4 = B Current % $.{v Previous % #. & & SAD pF>
* 5 - 1 Row iPSAD @ {4 fi- B4k b hfs (€255 L7 20" SADyy
B84 ok LR A £ R A R LR PR -
2L > ifd > % 4 17 Half Stop & »k[24] ©
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3.2.1 = # 4% % 5 ;% (3SS)[13]

1981 # d J. Jain v A. Jain #73& 2} e 2 > H i%/% 4o Figure

3.5)2‘1_—/—"" D >
1 1 1
3133
2] |2]3 N3
31313
1 2] |1 2] |1
2| 12| |2
1 1 |

Figure 3.5 = # & /5 & ;2
Step 1 % Previous 4= Current Macroblock B 47 A3 hp¥ iz -
ZHBOFFE 2§ L HE B FlAp R p/2(p:Search

Range) i % BE2 R Bh+ 4 B BRR #2> » ?‘»{b’g} 4
Hor & 1R B T A2 N B IZITOR B o

Step 2 ¢ #7 k#p B FIF - B2 TN g
B T BER B S B B F APEE p/A s B i
FZo AP LB R AT RTE (R
BT 5 2)

Step 3 © dewh et o A FBLE X EH T BT 0 B
poEhgsl ER B RO BRALR CRELE

BAUBATR o T L e AP T LF PR A
49
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sets

t’:.:_:ﬁ\- }1§|:ﬁ71\?p/ z‘EFg?

T e ﬁwj‘ L PP e il o
Fpt o ZHIEEHE > FE - BRHAATE R IPF 8RS B o
3.2.2 #r= #HIFH x5 2 (N3SS)[14]

1 1 1
22 @
1]1]1 |2

1 1[1]1]2] |1
1[1]1

1 1 1

Figure 3.6 #7= #H #=F 7 & =

1994 # d Renxiang Li #74% d1 60> (252 HIF 58 2 ¢ 5 & Step
H

1 & * T2y (Uniform)ts & 2L 2 - 4 end ji

Cm’
?@
L8
o

MEAFxe > =HsE@ ¥ H Smooth % LM » #rridxd #42

Center biased 77> ;% KB~ (L T 3o § o

Step 1 * = #4px 5 W2 € L YA B 45 [F] 4P BE p/2 (p: Search
Range)e 8 B f % 2~ R gLZ R Bk% F 8 B ok Bt
. )*I&%LFE]“ B 5 1 en®e s £ 2] 20 R
% B o 145t SAD EHVREE  HMTEE & &

m‘—’i\?%{“ S BLy E R B Rl 8 EkY nd ¢ - BLATE

3| Step2 > F A _E 7R 8 B EE > PP T] Step3 o
Step 20 i h e Fo8 B e F B E AT T
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PR E Y B A B NG 3R 58 B Rifen
By R Ao SAD £ o PE I LR R AOF B AT -
Step 3 © @ td¢td 8 BE > B2 R & Three Step Search &
= ;E@f—? o
Fpb o AT HIEHFE A BRATE 17 D33 BEk o
323 SES 9% ;% & 2 [15]
1997 # d Jianhua Lu #73% 410 ;2 ;SES 1 & § :cie = H40F %
BT oped A g o3 & UBSA ehfiin T 4p k= w ih7 3

wh o ifa%{ﬂ’* = % k3555 SAD & o

[ 11

A

| Jesd

e
IAY I

Figure 3.7 SES | %7 % 'A% &, B]

Step l: 4= Three Step Search — 4 » 4p§E R B p/2 2. 4, B B> &
KAWL BE Ej‘ﬁ'&r Figure 3.7 #7751 » AB,C» £ K| * %
EFN oA KT E P
If MAD (A) >=MAD(B) and MAD(A)>=MAD(C), I is selected
If MAD (A) >=MAD(B) and MAD(A) < MAD(C), II is selected
If MAD (A) < MAD(B) and MAD(A) < MAD(C), Il is selected ~ (5)
If MAD (A) < MAD(B) and MAD(A) >=MAD(C). 1V is selected
£ d Figure 3.8 #f51 » L2453 > £ VH 3 54 b & & gL

B T EHFH T — i Step ehif & 9 Candidate °
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(a) (b i) (d}
% - st phase ® - Ind phase

Figure 3.8 21| %7 % "2 15 3 4c 2L T 7, )
Step 2 ° e fhens 2 500 1 B ATds B ek i 8 0 -3 4P EE p/d
N BELs foStep 1 e 2 X2 3w > L 4c 8o

Step 3 ¢ fr Step 1 fv Step 2 #7 17 » fe §_pt =t *L AR AR B BE o

1 1

2 3
3|3

1 2] |1

2

1

Figure 3.9 SES 3% ;% & 2 A4 7 R B
Figure 3.9 #_SES & ;7 ¥ 2 0|5 > E BRH T E 10

317 BB
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3.2.4 v HF FH 2 (4SS)[16]

1996 & d Lai-Mao Po #7# ! 9= ;2 > 4v Figure 3.10 #7571 :

Figure 3.10(a) Figure 3.10(b)

= g

Figure 3.10(c) Figure 3.10(d)

Step 100 s 5m e wm@ s 4 Figure 3.10(a)#77 » 11 ¥

B R SXS chde Rl N BB 45 F A b hBE e B k] (B
v S ELR PR Stepd 0 F R BT Step 2 o

Step 2 © 1 Stepl #1435 Flerdo ] B 5 ¢ o o B FSXS FH N B R

4 w2 Step 1 45 1F e171%E > 4o Figure 3.10(b) ~ 3.10(c) » & & |
B A Step 2 PFend S BER|RMF] Step4 0 F PBT] Step 3 -

Step 3 * H - Step2 - # 0 F Ak B AT Step4 o

Step 4. wir-p Step & & % ® & » e Figure3.10(d) » 45 & %

FlN Bk B TFE P FE2REDEHe Eaiel o
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Te6 5 432100102 3 435 6 7
T —r— i
RS
-5 _ | A—§

4 . -—l——l/.—Q—
-2 41 1 D I
| EENESNERGEE
it — .__Ii__.-, & -
i //
|
U ———e - # »
3 _* | . ,
i
Cl < i
6 451 _ [
7 l_'z_zi_ " : TA I | S

Figure 3.11 = # & j§ & /2 ¥ 7 & B
Figure 3.9 ¥ SES#F w5 2 ch3 > F BRHAZT B 17527 B
g‘!:, o
325 g i®) 32 (DS)[17]
1997 & ¢ Shan Zhu ~ Kai-Kuang Ma #7t#% ! 7 j* > 4 Fig 3.12

S

Figure 3.12(a) Figure 3.12(b)

Step 1 4 4% % v v @B 4a40F o d Figure 3.12(a) i FIH
IEE > BERRTNGEL
Step 2-1% 4ok 45 5] ehgh 5 ¢ gLz Bl R ¥ 55§ B0 12 Figure
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sets

iﬁ}_.ﬁ.]‘1§l:ﬁylpp/ z"‘Fg?

3.12(b)shfe B FHF > T~ H D step 3-1 -
Step 2-2 © gt wgh o Pl bRiTE A Y g Edfstepl 0 3
Pl g ¢ gLt o
Step 3-1 * 40% 1 Figure 3.12(b) e B » 43 Bl gk 5 ¥ oo Bhevss
AU = G S P Lot R o
Step 3-2 ¢ g2 wmh s BlE A step2-1 > B P45 ] 0mE 5 ¢ B
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Py
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BB S

= Median(MV 1y, MV 2y, MV3y)
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FIR PECBEIREZHEA

[f(Px=MV1x) then I[f(Py=MV 1x) then
i=1 =1

Else if(Px=MV2x)then Else if(Py=MV2x)then
i=2 =2

Else Else
i=3 =3

Endif Endif

If(i=j)then

Apply motion estimation using 3x3 search window
centered y (Px,Py)
Else

Apply motion estimation using axb search window
centered by (Px,Py);where default value of a=b=5;
If(Rx<=3)set a=3;
If(Ry<=3)set b=3;
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Motion Refinement
Sequence: Foreman Frameskip=2
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B
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Figure 4.28 1 16x1674#0%F s gk > | * H SADIE > /LT #0F | & B iz 4
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d 30 R IRENPE o AT BB 1T 4o H0F TR R Y 4oaat 2 [ e
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Figure 4.29 3x3 & L Figure 4.30 5x5 & AL %
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4.5 ¢ %14 (Half Stop Decision)

d 42 ¢ BN LAY > Fae- RN A F AL 16x16 5 E
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macroblock 2 %% o d Figure 4.33 > X & F & 8x8 R HF » HFH %
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Fa BHIEEF > FR o 8x4~4x8 32 4x4 oz BRGNP E > RF
B ug o NUH e Yo kE oo o £ _Figure 434 5 3] 0 % ¢ AN R A1l N
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Half-stop
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Is Mode 4 chosen?

—» Continue searching

Mode 5 to Mode 7
Yes

Skip searching Mode 5 to Mode 7

Figure 4.33 Half stop decision 7 #% ]
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Calculate 8x8
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'

Apply 8x8 MSEA to Mode 1
motion search

,

Store intermediate SAD(m,n) values
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Find suboptimal points and
corresponding motion refinement
for Mode 2 to Mode 4
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corresponding motion refinement
for Mode 5 to Mode 7

<
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Y1 R FHREFEG
g P 450 ¢ g RN RDPE TR ZE AT AT
Bdopd SRR REE  RF A REAE X 2 G
erlﬂ -z:, m&%
5.1 3% S8 #7ie ¥ Ak &
Atk A efESE T (X 5450 7 d TableS.1 Factk Aens g 0 H P

F o TR e s REE BT R R R o

Table 5.1 4R % & o4 4 £

Sequence Sequence Sequence
Class Class Class
Name Name Name
Akiyo A Carphone B Fun Fair D
Container Table
. A . C Bream E
Ship Tennis
Foreman B Stefan C Weather E
Mobile &
News B C
Calendar
Silent
) B Football C
Voice
Coastguard B Tunnel D

Class A: Low spatial detail and low amount of movement

Class B: Medium spatial detail and low amount of movement or vice versa
Class C: High spatial detail and medium amount of movement or vice versa
Class D: Stereoscopic

Class E: Hybrid natural and synthetic
A ATié * Ak &~ 0 3 Class A Akiyo ~ Class B News -
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1

B Bk

ik

B3t

i

Carphone ~ Foreman ~ Class C Stefan ~ Class E Bream o d £ F 2

% Class D shdist 4k & » 702 7 pF 8 j2 RIS o

MPEG4
WORLD

22N

o
Class B Foreman

Class C Stefan Class E Br;eam
G ARCRIR R > AT

CPU : 1GHz Pentium 1II

Memory : 256MB SDRAM
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OS : Microsoft 2000 Server + Service Pack 2
Compiler : Intel C++ 6.0
H.26L(TMLS8.0)_} s %% :

Sequence type : [PPP

Image Format : QCIF

Frame Rate : 10 fps

Reference frames used in P prediction - 1

Blocktytype: 7 modes

Hadamard transform : Not used

Search range restrictions: none
MYV Resolution: 1/4-pel

RD-optimized mode decision: Low Complexity
Search Range in motion estimation : 16 for 10fps

Entropy coding method: UVLC

QPsused : 9~12~15~18 ~ 20 and 23

5 RIR A B T AR * Ansi C clock() funtion o
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% & 2 (MSEA) ~ = # #0& ;2 (3SS) ~ w # #0F ;2 (4SS) ~ 467 405 (DS)
BARG T TR 2  F ot e vt AR = B - 3k Frame 0 G
WeeniR > 33N L 2 @t 46 & Bh(check point) 0 1F & bt g

AT ) fx?l’ﬁ/z » 27 & B chsum norm ¥ &2 N4 A
gL ¥ ¥ A A7 an #7403 (Half Stop) 0 € & F ) ® L=
BN FHT B R FTRIV R RA LB T AR RS
en4 47 > 4 Figure 5.1 I Figure 5.6 » » %] ik & &_ Akiyo ~ News »
Carphone ~ Foreman ~ Stefan 2 Bream ° % ¢ Rate 2. 7 B %; ”eru 7

PR - s d Table 5.2 ki d & fBHE-# 8 % deid ehk o
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Akiyo

sfframe

0.50

0.45

0.40

0.35

0.30

0.25

0.20

News

siframe

0.50

0.45

0.40

0.35

0.30

0.25

0.20

Encoding Time
Sequence Akiyo

oo E' o E' E' o —o—
______________ it R SV S — -
1] 10 20 30 40 50 60

Bit Rate(kbit/sec)
Figure 5.1 & f81-# /% & ;2 * % Akiyo Sequence n#B P ¥ et i
Encoding Time
Sequence News skip 2

—o—
—A—

m

0] 20 40 60 80 100 120 140 *

bit rate{kbit/sec)
Figure 5.2 & f8 - j§ & ;2 * % News Sequence Hn# P ¥ et i
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Carphone
Encoding Time
Sequence Carphone skip 2
0.55
0.50
0.45
0.40
5}
E 0.35
=
w
0.30
0.25
—o— TML8.0
—4&— 388
0.20
—— 488
; ; ; ; : —©— DS
0.15
0 40 80 120 160 200 240 Proposed
Bit Rate (kbit/sec)
Figure 5.3 & f81-i# i & /% * % Carphone Sequence ¥ P i eit g
Foreman
Encoding Time
Sequence Foreman
0.55
0.50
0.45
0.40
w
E 0.35
e
0.30
0.25
—o— TMLSB.0
—— 3885
0.20
0O 488
; ; : ; : : —— DS
0.15
0 40 80 120 160 200 240 280 Proposed

Bit Rate(lbit/sec)
Figure 5.4 & 8 1-i# ;& & ;2 * % Foreman Sequence Yn#h PF & civt e
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Stefan

sfframe

0.50

0.48 |
0.46 |
0.44 |
042 |
0.40 |
0.38 |
0.36 |
0.34 |
0.32 |
0.30
0.28 |
0.26
0.24 |
0.22 |
0.20 |

0.18

Encoding Time
Sequence stefan skip 2

M o

0] 100 200 300 400 500 600 700 800

bit rate{kbit/sec)
Figure 5.5 & 8 P-i# ;& & ;2 * % Stefan Sequence Yu#h pF & et i

Bream

sHframe

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

Encoding Time
Sequence Bream skip 2

0 40 80 120 160 200 240 280 *

Bit Rate(kbit/sec)
Figure 5.6 % fé1-i#& ;% & i * % Bream Sequence ¥of§ & [F et it
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FIE FHREEFEHSG
Table 5.2 & f& -1 /& 5 /2 % fB 5k o
Seque:cleg . Tg_/{)L 1\(/148)(]::6“ 385 4S8 DS FMSEA (FMSI:/il/tTll\f[)Ls.O)

Akiyo 2.22 1.54 4.12 53 5.96 6.48 291%
News 2.15 1.49 4.1 5.21 5.9 6.28 292%
Carphone 2.13 1.47 3.95 4.78 5.12 5.55 260%
Foreman 2.19 1.33 3.95 4.49 4.75 5.54 253%
Stefan 2.20 1.26 3.84 4.34 4.54 4.04 184%
Bream 2.08 1.30 3.98 4.78 5.17 5.15 248%
Average 2.16 1.40 3.99 4.81 5.24 5.51 255%

d Figure 5.1 3| 5.5 2 Table 5.2 § % #dpdf+ » = ClassA 2 B

HULIEE A P 0 kY ST 4 et

2o G Rpechtoig kg 0 @

F_&

Class D~ E ¥ 4vig ervc % ff fic£ 5 - B> 3 & ¢ %] > £.%] % Stefan

fr Bream & B3t fds L il A 0 @ @ 7 A 16x16 ®ALES 0 &

SHite- B AR BB % H SAD 0 @ “HHi 4 il & BACLE £ K 4

kb Betrea 0 B R EH

v s
frde den x

[ 53
i L

%

s
i

4
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Akiyo

Bit Rate vs PSNR
Sequence Akiyo skip 2

46

4
=
[%a]
o
—o— TMLS8.0
—&— 388
| : : : i o 4SS
i i i i i —— DS
30
0 10 20 30 40 50 60 Proposed
’pit rate(kbit/sec)
Figure 5.7 & f81-i# /% & ;2 * % Akiyo Sequence Rate-Distortion =1+ #
News

Bit Rate vs PSNR
Sequence News skip 2
44

PSNR

—o— TMLS8.0
—A— 388
H H H H H H 488
i i i i i i —o— DS
28
0 20 40 60 80 100 120 140 Proposed
bit rate (kbit/sec)

Figure 5.8 & f81-i# /% & ;2 * % News Sequence Rate-Distortion £+ fi
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Carphone

PSNR

PSNR

Bit Rate vs PSNR
Sequence Carphone skip 2
42.5

40.5

39.5

38.5
—o—
37.5 A
—0—
—o—
36.5 : : : : : : :
80 100 120 140 160 180 200 220 240
Bit Rate(kbit/sec)
Figure 5.9 &% =~ % » & fAP-:# /7 & /= * & Carphone Sequence
Rate-Distortion 73+t (1)
Bit Rate vs PSNR
Sequence Carphone skip 2
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36.5
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34.5
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—A—
33.5 o
—o—
33.0

40 50 60 70 80 90 100
Bit Rate(kbit/sec)

Figure 5.10 &.® =~ % » 2§ /7 5 ;2 * & Carphone Sequence
Rate-Distortion 7+t §#2(2)
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Bit Rate vs PSNR
Sequence Carphone skip 2
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n=
=
g2 315
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29.5 ' ' ' '
20 26 32 38 44 50
Bit Rate(kbit/sec)
Figure 5.11 =~ F » & fa4-3# /% & /2 * % Carphone Sequence
Rate-Distortion £+t ##2(3)
Foreman
Bit Rate vs PSMNR
Sequence Fareman Skip 2
o FE
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[ e e R T o (Y SRR SRR Ve oo
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; —
_______________________________________________________ o] o
' ——
40 al 120 160 200 240 280 320 *

Bit Rate(kbit/sec)
Figure 5.12 &.¢ 3 =~ 5 » 2 - /75 2 * & Foreman Sequence
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Bit Rate vs PSMNR

Sequence Forernan Skip 2
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.................. e ilai.._.__| —& 355
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Bit Rate vs PSMNR
Sequence Bream skip 2
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Bit Rate(kbit/sec)
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Table 6.14] * FSEA & H.26L_} #7¥ ¥] & Functionps ¥

Function Time(ms)

Interpolation 50

Motion Search 70-100
Sum Norm 30
Integer Search 9-39ms
Half-Pel Search 16
Quarter-Pel Search 15

Intra prediction 10-11

Others 30

B & & ¥R & :2iE > Interpolation = Motion Search iz i $%
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