

國 立 中 央 大 學
電 機 工 程 研 究 所

碩 士 論 文

快速多階連續消除移動預估演算法

應用於 H.26L 視訊編碼標準

指導教授：張 寶 基 博士

研 究 生：蔡 國 基

中華民國九十一年六月

國立中央大學圖書館
碩博士論文授權書

(91年 5月最新修正版)

本授權書所授權之論文全文與電子檔，為本人於國立中央大學，撰寫

之碩/博士學位論文。(以下請擇一勾選)

()同意 (立即開放)

()同意 (一年後開放)，原因是：

()同意 (二年後開放)，原因是：

()不同意，原因是：

以非專屬、無償授權國立中央大學圖書館與國家圖書館，基於推動讀

者間「資源共享、互惠合作」之理念，於回饋社會與學術研究之目的，

得不限地域、時間與次數，以紙本、光碟、網路或其它各種方法收錄、

重製、與發行，或再授權他人以各種方法重製與利用。以提供讀者基

於個人非營利性質之線上檢索、閱覽、下載或列印。

研究生簽名: 蔡 國 基

論文名稱: 快速多階連續消除移動預估演算法應用於 H.26L視訊編碼標準

指導教授姓名： 張 寶 基 教授

系所 ： 電 機 工程研究 所 博士 碩士班

學號： 89521042

日期：民國 91 年 6 月 24 日

備註：

1. 本授權書請填寫列印兩份紙本，並親筆簽名後（全文電子檔內之授權書可

用電腦打字代替），一份請裝訂於紙本論文封面後之次頁，一份於辦理離

校時，交圖書館服務台（以統一轉交國家圖書館），未附本授權書，圖書

館將不予驗收。

2. 讀者基於個人非營利性質之線上檢索、閱覽、下載或列印上列論文，應依

著作權法相關規定辦理。

快速多階連續消除移動預估演算

法應用於 H.26L 視訊編碼標準
摘要

 關鍵字 –H.26L視訊編碼標準、快速移動預估演算法、多階連續消

除演算法(MSEA)、精確位移向量、中斷決策。

移動預估在視訊壓縮編碼上一直扮演著重要的角色，其最主要的

目的，是利用畫面間的相關性，來移除多餘的資料量，以達到壓縮目

的。因此移動預估演算法的好壞，對整個視訊壓縮品質有極大的影響。

H.26L是目前已發展完成並且最有效率的視訊編碼標準，它使用

了多重模式，即不同區塊大小的移動預估，來改進及增進移動向量的

精確度。然而，在H.26L視訊編碼標準上，使用全域搜尋演算法(Full

Search)會造成龐大的計算量。為了要降低全域搜尋演算法的複雜度，

本論文提出快速多階連續消除演算法(FMSEA)於H.26L視訊編碼標

準，來解決H.26L在多重模式移動預估上的搜尋。本論文所提出的方

法，最主要是修改多階連續消除演算法，並且結合精確位移向量

(motion refinement)及利用中斷決策來判斷是否繼續搜尋4x8、8x4及

4x4這三個模式。實驗的結果顯示，本論文所提出的快速多階連續消

除演算法，有效地降低複雜度並且畫面品質極接近全域搜尋法(Full

Search)，適合運用在視訊壓縮標準H.26L上。

 I

Fast Multi-level Successive Elimination
Algorithm for Motion Estimation in H.26L

Abstract

 Keyword- H.26L Video Coding、Fast Motion Estimation、Multi-level

Successive Elimination Algorithm (MSEA)、Refinement、

Half Stop Decision.

Motion estimation plays an extremely important role in the video

coding. The objective of the motion estimation is to remove the temporal

redundancy between video frames so that the motion compensated frames

can be coded efficiently.

H.26L video coding is the most efficient coding standard currently

available. It uses multi-mode with variable block-size motion estimation

to improve the accuracy. However, the conventional full search algorithm

will be a heavy computational load in this situation. To reduce the

complexity, we propose a fast multi-level successive elimination

algorithm (FMSEA) for H.26L multi-mode motion estimation search. The

proposed method is mainly based on the combination of a modified

multi-level successive elimination algorithm (MSEA) with a motion

refinement approach and a half-stop decision that skips the 8x4, 4x8, and

4x4 sub-block motion searches. Experimental results show that FMSEA

is very efficient in terms of the computational speedup and video

reconstruction quality for H.26L.

 II

目 錄

第一章 緒論...1

1.1 簡介..1

1.2 動機與目的..2

1.3 論文架構..2

第二章 視訊壓縮標準簡介 ..3

2.1 資料壓縮簡介..3

2.2 H. 263 視訊壓縮標準簡介..4

2.2.1 影像大小格式...5

2.2.2 區塊組成...6

2.2.3 DCT 與 ZigZag...8

2.2.4 量化(Quantization) ...9

2.2.5 半像素(Half Pixel)..10

2.2.6 移動向量與參考向量...11

2.2.7 四種選擇性編碼...12

2.2.8 H.263 壓縮流程..16

2.3 H. 26L 視訊壓縮標準簡介 ...20

2.3.1 Intra/Chroma/Inter 預測模式 ...23

2.3.2 Transform Coding ..31

2.3.3 UVLC...34

2.3.4 High/Low Complexity ...35

2.4 H .26L 複雜度分析 ...39

第三章 快速位移估計演算法簡介 ..42

3.1 無失真快速位移估計演算法(Lossless)43

 III

3.1.1 連續消除演算法(SEA) ...43

3.1.2 多階層連續消除演算法(MSEA)......................................46

3.1.3 一維投影演算法(1-D Projection)47

3.1.4 部份消除演算法(PDE) ...48

3.2 失真快速位移估計演算法 ..49

3.2.1 三步搜尋演算法(3SS) ...49

3.2.2 新三步搜尋演算法(NTSS) ..50

3.2.3 SES 搜尋演算法..51

3.2.4 四步搜尋演算法(4SS) ...53

3.2.5 鑽石搜尋演算法(DS)...54

3.2.6 區塊梯度搜尋演算法(BBGD)...56

3.2.7 基因搜尋演算法(Genetic) ...57

3.2.8 使用空間域演算法(CAS) ...59

第四章 快速多階連續消除演算法於 H.26L 視訊編碼標準................61

4.1 運用連續消除演算法及多階連續消除法在 H.26L 的分析61

4.2 H. 26L 模式(Inter Mode)分析 ...70

4.3 運用既有連續消除所算出的 16x16SAD 來降低複雜度76

4.4 精細小區塊的位移向量(Refinement) ..79

4.5 中斷(Half Stop Mode) ...83

4.6 快速多階連續消除演算法流程圖 ...84

第五章 實驗結果分析與討論 ..86

5.1 環境設定及所使用的視訊樣本 ...86

5.2 運用快速多階連續消除移動預估演算法加速的效果89

5.3 Performance 評估 ...94

第六章 結論與未來展望 ..101

 IV

參考文獻...102

 V

List of Figures
Figure 2.1 H.263 區塊組成架構圖 ...7

Figure 2.2 Y Cb Cr 與 6 塊 blocks 的關係圖7

Figure 2.3 ZigZag 排列 ...8

Figure 2.4 量化的範例 ..9

Figure 2.5 H.263 內差法公式 ...10

Figure 2.6 經過內差後的圖 ..11

Figure 2.7 移動向量示意圖 ..12

Figure 2.8 參考向量示意圖 ..13

Figure 2.9 PB-Frames 之說明 ...16

Figure 2.10 I 畫面的壓縮流程圖..17

Figure 2.11 P 畫面的壓縮流程圖 ...18

Figure 2.12 全部壓縮流程圖 ..19

Figure 2.13 視訊壓縮發展示意圖 ..21

Figure 2.14 視訊標準 H.26L 結構圖..23

Figure 2.15 Intra coding 4x4 區塊示意圖 ..23

Figure 2.16 Intra coding 4x4 區塊方向示意圖24

Figure 2.17 Intra coding 4x4 區塊 Mode1 示意圖24

Figure 2.18 Intra coding 4x4 區塊 Mode2 示意圖24

Figure 2.19 Intra coding 4x4 區塊 Mode3 示意圖25

Figure 2.20 Intra coding 4x4 區塊 Mode4 示意圖25

Figure 2.21 Intra coding 4x4 區塊 Mode5 示意圖25

Figure 2.22 Intra coding 16x16 區塊方向示意圖26

Figure 2.23 Intra coding Chrominance 區塊預測示意圖.................27

 VI

Figure 2.24 Inter coding 7 個區塊模式示意圖28

Figure 2.25 Inter coding 參考向量示意圖29

Figure 2.26 Inter coding 參考向量方向示意圖30

Figure 2.27 1-D Integer Transform and Inverse Transform31

Figure 2.28 Luminance and Chrominance 編碼示意圖32

Figure 2.29 Chrominace DC Transform ..33

Figure 2.30 ZigZag Simple Scan ...33

Figure 2.31 ZigZag Double Scan...33

Figure 2.32 量化對照表 ..34

Figure 2.33 UVLC 示意圖 ...34

Figure 2.34 Intra Coding 模式機率表..36

Figure 2.35 Interpolation 示意圖 ...38

Figure 2.36 H.26L 整體複雜度評估圖...41

Figure 2.37 H.26L 位移估計複雜度評估圖.....................................41

Figure 3.1 螺旋式搜尋 ...45

Figure 3.2 柵欄式搜尋 ...45

Figure 3.3 連續消除演算法流程圖 ...45

Figure 3.4 一維區塊投影比對演算法示意圖47

Figure 3.5 三步搜尋演算法示意圖 ...49

Figure 3.6 新三步搜尋演算法示意圖 ...50

Figure 3.7 SES 判斷象限示意圖 ..51

Figure 3.8 SES 判斷象限後增加點數示意圖52

Figure 3.9 SES 搜尋演算法整體示意圖 ..52

Figure 3.10 四步搜尋演算法分解步驟示意圖53

Figure 3.11 四步搜尋演算法整體示意圖54

Figure 3.12 鑽石搜尋演算法分解步驟示意圖54

 VII

Figure 3.13 鑽石搜尋演算法整體示意圖55

Figure 3.14 區塊梯度搜尋演算法整體示意圖56

Figure 3.15 基因演算法交配步驟示意圖58

Figure 3.16 參考位移向量圖 ...59

Figure 4.1 將 SEA 演算法放入 H.26L 流程圖62

Figure 4.2 使用一個 16x16 模式的狀況下，TML8.0、16x16SEA、

8x8MSEA 及 4x4MSEA 壓一張所需要花的時間63

Figure 4.3 使用一個 16x16 模式的狀況下，TML8.0、16x16SEA、

8x8MSEA 及 4x4MSEA 畫面品質的比較63

Figure 4.4 使用一個 16x16 模式的狀況下，TML8.0、16x16SEA、

8x8MSEA 及 4x4MSEA 位元率的比較64

Figure 4.5 使用一個 16x16 模式的狀況下，16x16SEA、8x8MSEA

及 4x4MSEA 所需要檢查的點數 ...64

Figure 4.6 使用一個 16x16 模式的狀況下，16x16SEA、8x8MSEA

及 4x4MSEA 算 Sum Norm 的時間..65

Figure 4.7 使用四個模式 16x16-8x8的狀況下，TML8.0、8x8MSEA

及 4x4MSEA 壓一張所需要花的時間65

Figure 4.8 使用四個模式 16x16-8x8 的狀況下，TML8.0、8x8MSEA

及 4x4MSEA 畫面品質的比較 ...66

Figure 4.9 使用四個模式 16x16-8x8 的狀況下，TML8.0、8x8MSEA

及 4x4MSEA 位元率的比較 ...66

Figure 4.10 使用四個模式 16x16-8x8 的狀況下，8x8MSEA 及

4x4MSEA 所需要檢查的點數 ..67

Figure 4.11 使用七個模式 16x16-4x4 的狀況下，TML8.0、及

4x4MSEA 壓一張所需要花的時間 ..67

 VIII

Figure 4.12 使用七個模式 16x16-4x4 的狀況下，TML8.0、

8x8MSEA 及 4x4MSEA 畫面品質的比較67

Figure 4.13 使用七個模式 16x16-4x4 的狀況下，TML8.0、

8x8MSEA 及 4x4MSEA 位元率的比較68

Figure 4.14 模式分佈 - 中位元率 (No Frameskip)70

Figure 4.15 模式分佈 - 中位元率 (Frameskip 1)71

Figure 4.16 模式分佈 - 中位元率 (Frameskip 2)71

Figure 4.17 模式分佈 - 低位元率 (No Frame skip)72

Figure 4.18 模式分佈 - 低位元率 (Frameskip 1)72

Figure 4.19 模式分佈 - 低位元率 (Frameskip 2)73

Figure 4.20 模式分佈 - 高位元率 (No Frameskip)74

Figure 4.21 模式分佈 - 高位元率 (Frameskip 1)74

Figure 4.22 模式分佈 - 高位元率 (Frameskip 2)74

Figure 4.23 以 Foreman Sequence 使用 1 Mode、4 Mode 及 7 Mode

的 Rate Distortion 分析 ..76

Figure 4.24 以 Foreman Sequence 在各種位元率下使用 1 Mode、4

Mode 及 7 Mode 所得到降低位元率比例圖............................77

Figure 4.25 使用 8x8 MSEA 搜尋 16x16 區塊模式，並使用所得的

SAD 值繼續搜尋 16x8 – 4x4 區塊模式，並和 TML 8.0 區塊

模式的準確度...78

Figure 4.26 使用 8x8 MSEA 搜尋 16x16 區塊模式，並使用所得的

SAD 值繼續搜尋 16x8 – 4x4 區塊模式，並和 TML 8.0 位移

向量的準確度...79

Figure 4.27 以 8x8MSEA 來搜尋 16x16 區塊模式，再利用其殘餘

的 SAD 值，往下搜尋小區塊的位移向量，與 TML8.0 所產生

 IX

模分佈的差異圖...80

Figure 4.28 以 16x16 所搜尋過的點，利用其 SAD 值，往下搜尋小

區塊的位移向量，得到其中最小的一個，圖中的距離就是

TML8.0 和上述方法的距離統計圖 ..81

Figure 4.29 3x3 搜尋視窗 ...81

Figure 4.30 5x5 搜尋視窗 ...81

Figure 4.31 二步搜尋法 ...82

Figure 4.32 利用周圍 3x3 、5x5 search window 及 2SS(two step

search)的方式來進行精確小區塊中位移向量的相似度比較.82

Figure 4.33 Half stop decision 流程圖 ...83

Figure 4.34 利用 Half stop decision 判斷成功的機率...................84

Figure 4.34 快速多階連續消除演算法流程圖85

Figure 5.1 各種快速演算法用在 Akiyo Sequence 編碼時間的比較

...90

Figure 5.2 各種快速演算法用在 News Sequence 編碼時間的比較

...90

Figure 5.3 各種快速演算法用在 Carphone Sequence 編碼時間的

比較...91

Figure 5.4 各種快速演算法用在 Foreman Sequence 編碼時間的比

較 ...91

Figure 5.5 各種快速演算法用在 Stefan Sequence 編碼時間的比較

...92

Figure 5.6 各種快速演算法用在 Bream Sequence 編碼時間的比

較 ...92

Figure 5.7 各種快速演算法用在Akiyo Sequence Rate-Distortion的

比較...95

 X

Figure 5.8 各種快速演算法用在 News Sequence Rate-Distortion 的

比較...95

Figure 5.9 在高位元率，各種快速演算法用在 Carphone Sequence

Rate-Distortion 的比較(1) ..96

Figure 5.10 在中位元率，各種快速演算法用在 Carphone Sequence

Rate-Distortion 的比較(2) ..96

Figure 5.11 在低位元率，各種快速演算法用在 Carphone Sequence

Rate-Distortion 的比較(3) ..97

Figure 5.12 在中高位元率，各種快速演算法用在 Foreman

Sequence Rate-Distortion 的比較(1)..97

Figure 5.13 在中低位元率，各種快速演算法用在 Foreman

Sequence Rate-Distortion 的比較(2)..98

Figure 5.14 各種快速演算法用在 Stefan Sequence Rate-Distortion

的比較...98

Figure 5.15 在中高位元率，各種快速演算法用在 Bream Sequence

Rate-Distortion 的比較(1) ..99

Figure 5.15 在中低位元率，各種快速演算法用在 Bream Sequence

Rate-Distortion 的比較(2) ..99

List of Tables
Table2.1 H.263 支援影像大小格式...5

Table2.2 Y Cb Cr 解碼還原表 ..6

Table5.1 視訊樣本的分類表..86

Table5.2 各種快速演算法編碼張數比較表..................................89

Table6.1 利用 FSEA 在 H.26L 上所得到各 Function 的時間 ...101

 XI

第一章 緒論

第一章 緒論

1.1 簡介

隨著科技的進步，人們常享受著科技的便利，如 MPEG-1 音視訊

壓縮標準在 VCD 及 MP3 的應用，漸漸地取代舊時的錄影帶及錄音

帶；緊接著而來的是，利用 MPEG-2 音視訊壓縮標準，比 VCD 擁有

更高的畫質及音質的 DVD，使我們在家中就如同置身在高水準、高

品質的電影院中。由於訊號壓縮技術的發展，加上寬頻網路建設不斷

的擴展，促使多媒體音視訊在網路上的應用大放異彩，例如用在公眾

網路或網際網路(Internet)上來達成視訊會議(Video Conferencing)的H.

263，以及有高抗錯性及物件為基礎特性的 MPEG-4，不但適合用在

儲存音視資料上，而且其高抗錯能力及低位元輸出率，極適合在無線

的環境下傳輸。

然而，新一代的視訊標準 H.26L 也即將問世，其性能不但勝過

H.263 低位元率及 MPEG-4 高抗錯性的特性，同時也考慮到網路傳輸

的功能。雖然 H.26L 還在制定中，確已成為學術及工業界研究的熱門

話題。

1.2 動機與目的

由於人眼的視覺神經有視覺暫留的特性，視訊動畫每秒播 30 張

的畫面，便不會察覺有不連續的效果，如此高的播放速度，鄰近畫面

間的相關性必定很高，所以一般的視訊壓縮標準，會利用位移估計

(Motion Estimation)及位移補償(Motion Compensation)等技術來消除

此時間上的相關性。

所以要評估一套視訊編碼標準的效能，就非位移估計的演算法莫

 1

第一章 緒論

屬了，而本篇論文將針對位移估計演算法做些研究及探討，並提出一

套針對在 H.26L 的快速演算法。這套新一代的視訊標準，雖然有很多

數據証明其效能，比從前 H.263 及 MPEG-4 好[23]，但從一些文獻[22]

及實驗結果証實，其編碼的複雜度太高，特別是在位移估計這個部

份，使其難以運用在即時的壓縮上，所以本論文將針對其演算法複雜

度，做一定的加速，並且不會降低太多畫面的品質。

1.3 論文架構

在本篇論文的第一章中，描述論文動機；第二章介紹為什麼要

資料壓縮、視訊標準 H.263 以及新一代的視訊標準 H.26L 並就其複雜

度作深入的分析；第三章敘述各種快速的位移估計演算法；第四章會

提出本論文所發展出來的快速多階連續消除移動預估演算法；第五章

為實驗結果與討論；最後，第六章則為結論及未來展望。

 2

第二章 視訊壓縮標準簡介

第二章 視訊壓縮標準簡介

 第二章的主要內容，首先在第一節中會介紹基本的視訊壓縮標

準，包含為什麼需要資料壓縮。第二節會介紹用在低位元率的視訊標

準 H.263[2][3]。在第三節會介紹新一代的視訊壓縮標準 H.26L[5]，也

是本論文所採用之視訊標準。第四節會用軟體來分析 H.26L 的複雜

度。

2.1 資料壓縮簡介

為什麼資料需要壓縮呢? 原來就是因為我們將聲音、影像和動態

的畫面數位化後，產生的大量資料，使得在儲存或傳輸有種種的限制

及不便。擧一個例子，以一個 352*240 影像大小的及播放的速度為每

秒 30 張全彩畫面(RGB)視訊，要存放在一片 650Mbyte 的 CD 中，大

約只能儲存 90 秒中，計算方式如下：

352 * 240 pixels/frame * 3 bytes/pixel * 30 frames/sec=7603200 bytes/sec

650*1024*1024 bytes/7603200 bytes/sec= 89.64 sec

從以上的例子，可知資料若不採用資料壓縮的方式來降低資料

量，那所要儲存及傳輸的資料必定是個天文的數字。資料壓縮的好處

一，就是將資料量降低，可使得傳輸的費用降低，或者是在一定的傳

輸頻寬下，得到更好的視訊品質；好處二，在儲存上，可以將一部兩

 3

第二章 視訊壓縮標準簡介

小時的電影，直接放入一片小小的 CD 中，由此可見其重要性。

 而在資料壓縮中，有分為兩種：

z 無損耗性編碼(Lossless compression)

z 損耗性編碼(Lossy compression)

無損耗性編碼代表解碼得到的資料和原始資料完全相同，通常是

用在不容有誤差存在的文件資料，以及應用在電腦系統內部無限次傳

輸、複製及再生等處理方面，通常其壓縮比率並不大。

損耗性編碼，顧名思意就是解碼之後與原來的不同，特別可用在

影像、聲音及視訊的訊號上，主要是因為人的眼睛及耳朵對影像及聲

音訊號有部份，並不是那麼的敏感，因此這部份的資訊可以不用那麼

重視，甚至可以忽略。

 以下，就以簡單的方式講解幾個重要的視訊壓縮標準。

2.2 H.263 視訊壓縮標準

H.263[2][3]是特別用在低位率(Low Bit Rate)傳輸的視訊標準，目

的是用在低寬帶(Low Bandwidth)上傳輸視訊，擁有如下的特點：

1.提供五種視訊格式，分別是 sub-qcif、qcif、cif、4cif、16cif。

2.列狀結構的區塊組層。

3.半像素(Sub-pixel)的移動向量補償。

 4

第二章 視訊壓縮標準簡介

4.四種選擇性編碼模式。

•無限制的移動向量模式(Unrestricted Motion Vector mode)

•結構式算數編碼模式（Syntax-based Arithmetic Coding mode）

•進階預測模式(Advanced Prediction mode)

•PB 畫面模式

2.2.1 影像大小格式

H.263 支授的影像大小格式有五種，分別為 sub-qcif、qcif、cif、

4cif、16cif，其五

Picture Format Nu
pix
lum

Sub-QCIF

QCIF

CIF

4CIF

16CIF

一般來說，影

色彩，在經過矩

訊號 Y 及二個色

訊號即可組成一

度訊號，其次才

以我們從上表可

還原圖案呢？

假設有個圖

種格式大小如 Table 2.1:
Table 2.1 H.263 支援影像大小格式

mber of
els for
inance (dx)

Number of lines
for luminance
(dy)

Number of
pixels for
chrominance
(dx/2)

number of lines
for chrominance
(dy/2)

128 96 64 48

176 144 88 72

352 288 176 144

704 576 352 288

1408 1152 704 576

像都是由 R(紅色)、G(綠色)、B(藍色)三原色來表達

陣轉換後可將 RGB 訊號轉換成一個亮度(luminance)

差訊號(color difference)Cb、Cr，用 Y、Cb、Cr 三個

個完整的顏色，而且人眼在處理顏色上，最敏感是亮

是色差訊號，所以我們利用了這點特性來作壓縮，所

知 Y、Cb、Cr 的比值是 4:1:1，從這樣資訊中要如何

案(4x4)資料流是這樣的

5

第二章 視訊壓縮標準簡介

亮度訊號：Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16

色差訊號：Cb1 Cb2 Cb3 Cb4

色差訊號：Cr1 Cr2 Cr3 Cr4

Table 2.2 表示一個 4x4 的還原圖案表，各點都有三個 Y Cb Cr 值，

所以依照這樣的方法

Y1 Cb1 Cr1

Y5 Cb1 Cr1

Y9 Cb3 Cr3

Y13 Cb3 Cr3

從上表可知只要

資料，而且人的肉眼

省 1/2 的資料量，這

料所作的壓縮。

2.2.2 區塊組成

H.263 是以一種

Picture layer、Group

構如 Figure 2.1 所示

就可以還原 qcif 影像。
Table 2.2 Y Cb Cr 解碼還原表

Y2 Cb1 Cr1 Y3 Cb2 Cr2 Y4 Cb2 Cr2

Y6 Cb1 Cr1 Y7 Cb2 Cr2 Y8 Cb2 Cr2

Y10 Cb3 Cr3 Y11 Cb4 Cr4 Y12 Cb4 Cr4

Y14 Cb3 Cr3 Y15 Cb4 Cr4 Y16 Cb4 Cr4

使用 4:1:1 的資料量，就可以表示 4:4:4 的的原始

對這樣的改變是不敏感的，以這樣的方式可以節

是在使用 DCT 及量化壓縮法以前，針對原始資

階層式的結構組成，由上而下分成四層，依序為

 of blocks layer、Macro block layer、block。其架

：

6

第二章 視訊壓縮標準簡介

Picture
Header

GOB
Data

GOB
data

P
Layer

GOB

Header
MB
Data

GOB
Layer

MB

Header
B

Data

MB
Layer

 TCOFFECTs
Block
Layer

當然在不同的規格

同。假設一張圖的大小

則每一張圖有 9 條 GOB

塊 8x8 的 block，所以

就是 block 在 MB 中的

 16

1 2

16

3 4

 Y

 Figu

Figure 2.1 H.263 區塊組成架構

大小中，其各 GOB 區塊的組成大小也不盡相

為 176x144，其中每個 MB 的大小為 16x16，

，每個 GOB 有 11 個 MB，而每個 MB 則有 6

每一張圖則有 594(9*11*6)個 block，Figure2.2

排序。

8

8

8 5 8 6

 Cb Cr
re 2.2 Y Cb Cr 與 6 塊 blocks 的關係

7

第二章 視訊壓縮標準簡介

2.2.3 DCT 與 ZigZag

使用 DCT 的結果，會使得 block 圖像的 DC 值偏向於 block 的左

上角，再用 ZigZag 的排列方式，排成一串頭重腳輕的資料流，這樣

一來，之後我們使用 vlc 編碼時，由於資料流後面的值太小而成為一

連串的 Zero，而可以編成少量的碼，以下就是當一個 block(8x8)當成

一個矩陣的作法。

with , v, x, y=0, 1, 2,..., 7　

where x,y = spatial coordinates in the pixel domain,

 u,v = coordinates in the transform domain,

 C(u) = 1/ 2 for u = 0, otherwise 1,

 C(v) = 1/ 2 for v = 0, otherwise 1.

1 2 6 7 15 16 28 29
3 5 8 14 17 27 30 43
4 9 13 18 26 31 42 44
10 12 19 25 32 41 45 54
11 20 24 33 40 46 53 55
21 23 34 39 47 52 56 61
22 35 38 48 51 57 60 62
36 63 64

37 49 50 58 59
Figure 2.3 ZigZag 排列

8

第二章 視訊壓縮標準簡介

Figure 2.3 為 ZigZag 排列表，排完後的資料流，前面是左上角的

數值，後面則是右下角的數值。

2.2.4 量化(Quantization)

一個 block(8x8)經過 dct 和 zigzag 的轉換後，形成一個數值都集

中前面的資料流，如果再經過量化處理就會使得數值變小，資料流後

頭的數值都因太小而被量化作 zero,而使得後來的編碼更為減少。還

原時一定要把量化值放在 H.263 檔案的檔頭，以便作反還原之用，還

原結果當然會與原始碼有所差距，但如果量化值取得適當，其畫面不

僅可讓人接受，其壓縮出來的碼也會相當的少，在每個 MB 中還可以

在不同的情況下有自己的有自己的量化值。量化值的範圍為 1 至 31，

值愈小畫面愈好，壓出來的碼也愈多。Figure 2.4 是個量化的例子:

2.2.5 半像素(half-pix

每個影像都是由一個

frames 找尋 motion vector

以"0.5"為基本單位，來作更

訊是以數位化的方式儲存，

Figure 2.4 量化的範例

el)

一個像素所組合而成的，但由於在處理 P

時，我們可利用半像素使得 motion vector

精細的調整，可是在原本影像中，顏色資

不可會有"半點"，產生在點與點中間，此

9

第二章 視訊壓縮標準簡介

時我們要利用 H.263 的標準公式來幫我們作圖像的擴張，這樣一來就

會使得原本 176x144 的影像變成 352x288 大小的影像，這樣一來二點

中間就會產一個像素，我們稱之為"半像素”。

Integer pixel position

Half pixel position

a = A
b = (A + B + 1) / 2
c = (A + C + 1) / 2
d = (A + B + C + D + 2) / 4

a b

c d

A

C D

B

因半像素是

(luminance)上尋

Figure 2.6 左

像。

Figure 2.5 H.263標準的內差法

用來使 motion vector 能精準，而在 H.263 只在亮度

找 motion vector，所以下圖片以灰階來表示。

圖是
Figure 2.6 經過內差後的圖

經過重建後的影像，右圖是經過公式計算後的影

10

第二章 視訊壓縮標準簡介

2.2.6 移動向量與參考向量

在 inter-frame 編碼中，是利用了鄰近的二張畫面中，會有相當程

度上的類似，所以將第二張畫面中，以大區塊(16x16)為單位與前一

張的重建後的畫面作預估，並且判斷其大區塊的編碼方式，若有在第

一張重建後的畫面中找到接近的大區塊，則可以針對移動向量與參考

向量的差異量和二個大區塊的差異量作編碼，以達到影像壓縮目的。

以下分別介紹"移動向量"、"參考向量"和"大區塊間的差異量"。

2.2.6.1 移動向量

如果在前一張重建後的影像中找到一個相似的大區塊(16x16)，則

將(X1,Y1)－(X2,Y2)作為移動向量。

2.2.6.2 參考向量

在一般的影像中，

在編位移向量前，利用

向量減去參考向量，若

Figure 2.7 移動向量示意圖

全大部份的畫面是連續的，利用這樣的特點，

大區塊附近的向量，做為參考向量，再將移動

區塊移動的方向及大小和附近的區塊相似，則

11

第二章 視訊壓縮標準簡介

大區塊間的

MV1 MV

MV2

MV1 MVMV(0,0)

(0,0)

: Picture or GOB border

MV1 MV1

其要傳的位移向量幾乎為零，這樣的作法可以增加不少壓縮率。參考

向量的作法是，分別對 MV1、MV2、MV3 的 X、Y 值，取出中間值

作為參考向量；如果大區塊是在圖案的邊緣，則利用 Figure 2.8 的規

則即可。

2.2.6.3

雖然找到了 motio

亮度差異度比較小，為

將現在的大區塊減去前

送。解碼時，只要將其

資料，用此方法可使畫

2.2.7 四種選擇性

2.2.7.1 無限制的移

 在 H.263 的基本預

如此的限制造成在畫面

MV : Current motion vector
MV1: Previous motion vector
MV2: Above motion vector
MV3: Above right motion vector

MV2 MV3

MV1 MV

MV3MV2

Figure 2.8 參考向量示意圖

差異量

n vector，但這只是代表著這二個大區塊之間的

了彌補其差異，待 motion vector 傳送出去，再

一張的大區塊，所得出來的值用 VLC 編碼傳

差異加回前一張的大區塊，就可以相當近似原

質不會太差。

編碼模式

動向量模式(UMV mode）

測模式中，移動向量被限制不能指到畫面外，

邊緣的大區塊，可能無法找到最佳的預測區

12

第二章 視訊壓縮標準簡介

塊。而在這個選項模式中，則允許移動向量指到畫面外面，而畫面外

不存在的像素，就用邊界像素來取代。如此一來，即使在畫面邊緣有

 擴展的像素值如何定義呢？我們以 QCIF 的灰階訊號（Y）說

明，首先定義如下之式子：

 Rumv(x, y) = R(x', y')

其中

 x, y, x', y' = 在像素域（Pixel domain）的空間座標

 Rumv（x, y）=參考畫面（Reference picture）在（x, y）位置

 的像素值（Pixel value）

y'）=參考畫面在（x', y'）位置的像素值

 此外，使用這個選項讓移動向量的預測範圍增大，水平和垂直移

物體移動產生，也可得到不錯的預測效果。

 R（x',

其中




=
otherwise x

175> xif 175
0< xif 0

 x 



f


 y



=

otherwise
143>y if 143
0<y i 0

 y

 13

第二章 視訊壓縮標準簡介

動向量值的範圍由（-16, 15.5）增加變為（-31.5, 31.5），所以這個選

可變長度編碼（Variable

AP mode）

 在這個選項中採用了重疊區塊移動補償（Overlapped Block

Motion Compensation, OBMC），重疊區塊移動補償只針對亮度

（luminance）區塊做處理，使用重疊區塊移動補償可以減少區塊效

應（block artifact），提高畫面品質。此外，並且可以採用 4 個 8x8 區

塊的移動向量來代替原來只有一個 16x16 大區塊的移動向量，雖然 4

個移動向量使用較多的位元，但是卻能預測更好的重建畫面。若同時

使用 Unrestricted Motion Vector mode，這 4 個 8x8 區塊的移動向量

也允許超出圖形的邊界及擴展移動向量。這個選項如果和 PB-frames

ode 一起使用，則重疊區塊移動補償僅使用在 P-picture，而不使用

在 B-picture 中。

項更適合於攝影機產生移動 (camera moment) 或較大的畫面格式

(如 4 CIF 或 16 CIF) 的情形下。

2.2.7.2 結構式算數編碼模式(SAC mode）

 在這個選項中是在無失真（lossless）的編碼方式中，以算術編碼

模式（Arithmetic Coding）來代替 H.263 原來的

Length Coding），使用這個選項可以提高編碼效率，其缺點是運算相

當複雜。

2.2.7.3 進階預測模式（

m

 14

第二章 視訊壓縮標準簡介

2.2.7.4 PB 畫面模式（PB-Frames mode）

 一組 PB-Frames 是由一張 P （ Prediction ）畫面和一張 B

（Bi-directional）畫面所構成的，這張 P 畫面是由前一張解碼後的 P

畫面所預測出來的，至於 B 畫面，則是由前一張解碼後的 P 畫面和

目前這一組中被解碼過的 P 畫面所預測出來的，之所以取名為 B 畫

面是因為它能雙向地由前後兩張 P 畫面來預測自己的畫面，如圖 2.6

所示。

s 之說明

 在一組 PB-Frames 中 P 畫面產生一個大區塊， 畫面也緊跟著

中 個區塊（前面 6 個區塊屬於 P 畫面，後面 6 個區塊屬於

B 畫面），這一點，不同於 MPEG 產生一張 P 畫面之後，再產生 B 畫

面。所以在 H.263 中把 PB-Frames 當做一組來處理，可以減少一些標

Figure 2.9：PB-Frame

B

產生一個大區塊，所以若使用 PB-frames mode，在一個大區塊的階層

，包含 12

頭（Header）所用的位元率，有效地降低位元率。

 15

第二章 視訊壓縮標準簡介

2.2.8 H.263 壓縮流程

接下來的就是 P 畫

2.2.8.1 Ｉ畫面的壓縮流程

接下來介紹的流程，只用於基本的壓縮，也就是第一張是 I 畫面，

面，所以我們將分別說明。

Figure 2.10 I 畫面的壓縮流程圖

 16

第二章 視訊壓縮標準簡介

2. 程

2.8.2 Ｐ畫面的壓縮流

Figure 2.11 P 畫面的壓縮流程圖

17

第二章 視訊壓縮標準簡介

 18

2.2.8.3 全部壓縮流程

Figure 2.12 全部壓縮流程圖

第二章 視訊壓縮標準簡介

2.3 H.26L 視訊壓縮標準簡介

緊接 H.263 之後，在西元 1998 年，國際電信組織 (ITU-T) 已經

開始著手制定下一代的視訊標準，H.26L(Long Term)[5]，其目標有以

下幾點：

z 具高壓縮率的效能

和 H.263 比較，以相同的品質，但只需要其不到一半的位元率。

z 高畫質的應用[6]

不但能用在低位元率的壓縮，而且在高位元率所壓縮出的位元

率，皆比之前的視訊壓縮標準低，並且畫面品質與先前的差不多。

z 具計算複雜度的可調適性(Complexity scalability in encoder and decoder)

可調適於畫面的品質及編碼器的複雜度，因所用的計算機的能力

而有所區分。

z 具有高抗錯的能力(Error Resilience)

z 友善的網路傳輸設計

z 詳細定義解碼器規格

不會與編碼器有不協調的狀況發生(no mis-match)。

 19

第二章 視訊壓縮標準簡介

高壓縮率

 由 Figure 2.13 可

z Intraframe D

z Integer-Pel M

z Half-Pel Mo

z Quarter-Pel M

Block Size <

z Quarter-Pel +

Block Size <

 在 1990 年

壓縮，後來有 H

compensation，由

實可以在一定畫

Figure 2.13 視訊壓縮發展示意圖
From Thomas Wiegand, Heinrich-Hertz-Institute Berlin
一覽視訊壓縮標準的發展史，依序是

CT coding (JPEG, 1990)

otion Compensation (H.261, 1991)

tion Compensation (MPEG-1, 1993; MPEG-2, 1994)

otion Compensation(MPEG-4, 1998) + Variable

16x16 和 8x8> (H. 263, 1996)

 Multi-Frame Motion Compensation + Variable

16x16 - 4x4> (H. 26L, 2001)

，最早的視訊壓縮，是用 JPEG 一張張的圖來做

. 261[1]用 Block based matching Integer-pel motion

Figure 2.13 可觀察到，增進移動預估精確度確

面品質之下，壓縮的位元率比先前的降低了有

20

第二章 視訊壓縮標準簡介

30%-40% ， 而 到 了 1993 、 1994 年 的 MPEG-1(VCD) 、

MPEG-2(DVD)

壓縮的位元率比 JPEG 壓縮降低了有 50%-60%，由以上的視訊壓

縮發展過程，可讓我們了解一件事，位移預估演算法若做的恰

當，會使整個視訊壓縮的效能達到最好。另一方面，若將搜尋的

區塊縮小(16x16 變成 8x8 或 更小的 4x4)，或許可以找到比原先

的，所以如果大小區塊都找，在配合一些 Rate-Distortion[8][9]的

1/4 ompensation，就是最基本的

H. 26L 的樣子。若要再增進壓縮的效率，就要利用到編碼之前的

，利用這些畫面，可以找到一個和現在這個區塊最

像的，特別是對動作較大的影片， .26L 位元率

與最初利用 JPEG 壓縮的來比，大概降低有 75%的位元率。

 Figure 2.14 是 H.26L 整體的架構圖，以下就開始介紹 H. 26L

與之前的標準不同之處，介紹的順序，會依據編碼的順序，內容

會包含 Intra/Chroma/Inter prediction mode、Transform coding：4x4

Integer Transform 、 VLC ： Universal VLC 、 Zig-zag scan

， 再用更精細的移動預估，精細到 1/2 像素為單

位去尋找位移向量，到了 98 年的 MPEG-4[4]，再精細到 1/4 像素，

16x 16 更像的區塊，可以增進編碼的效率； 但也未必是小的區

塊就最省，因為這也要看影像是那一類的，是平滑的或是複雜

機制和之前的 Pixel 的 motion c

好幾張的畫面

效果最好，所以 H

 21

第二章 視訊壓縮標準簡介

/Quantization、Motion Estimation： High/Low Complexity。

Coder

Control Data

 Transform/
Quant. Transf. coeffs -

Decoder Deq./Inv.

Entropy

 Motion-

Compensated Intra/Inter

Motion Data

Motion

Figure 2.14視訊標準H.26L結構圖
From Thomas Wiegand, Heinrich-Hertz-Institute Berlin

2.3.1 Intra/Chroma/Inter 預測模式:

2.3.1.1 Intra prediction mode:

 分別為 4x4 及 16x16 兩種區塊，4x4 又有六種不同的模式

(Mode)，分別是： I A B C D

E a b c d

F e f g h

G i j k l

H m n o p

a b c d
e f g h

i j k l
m n o p

4

4

Figure 2.15

0. DC

1. Diagonal Vertical 22.5deg

2. Vertical

3. Diagonal 45deg

4. Horizontal

5. Diagonal Horizontal -22.5deg

 22

第二章 視訊壓縮標準簡介

 23

Figure 2.16

5

2 1

4

3

Intra Prediction mode 是利用其周圍已解壓縮的像素，即 Figure

中大寫 A-I 的像素，然後根據 Figure 2.16 的五個方向，也就是這

模式，做預測，至於是那一個像素預測那一個，依據模式的不同，

變化。

這種模式是利用，(A+B+C+D+E+F+G+H)/8，

個點的平均值，然後利用此平均值，減去小寫

的像素值，再利用剩下的差異值，去編碼。假

塊上方或左方的四個像素都沒有的話，就單用

或上方的四個像素值做平均再相減，若左方和

都沒有的話就用 128 去相減。

e 1: Diagonal vertical 22.5deg

是)/2來預測的。

2.15

五個

而有

Mode 0: DC prediction

這八

a-p

若區

左方

上方

Mod

a 是由 (A+B)/2來預測的。

e 是由 B來預測的

b,i (B+C

f,m 是由 C來預測的。

c,j 是由 (C+D)/2來預測的。

d,g,h,k,l,n,o,p 是由 D來預測的

由Figure 2.17的示意圖可表達出以上所陳述的。
Figure 2.18

Figure 2.17

第二章 視訊壓縮標準簡介

 24

Mod

 Vertical mode 一定要有大寫的 A-D 周圍四個點。由 Figure 2.18

示意圖可看出，利用 A-a、A-e、A-i、A-m 得到差值，進行編碼，其

它的行(B、C D)依此類推。

ode 3: Diagonal 45deg

m 是由 (H+2G+F)/4 測的。

i,n 是由 (G+2F+E)/4來預測的。

e,j,o 是由 (F+2E+I)/4來預測的。

a,f,k,p 是由 (

測的。

d 是由 (B+2C+D)/4來預測的。

由F 示意圖可表達出以上所陳述的。

Mod

一定要有大寫的 E-H 周圍四個

點。由 Figure 2.20 示意圖可看出，利用 E-a、E-b、E-c

E-d 、C、D)依此

推。

e 2: Vertical

、

M

Figure 2.19

來預

E+2I+A)/4來預測的。

Figure 2.20

b,g,l 是由 (I+2A+B)/4來預測的。

c,h 是由 (A+2B+C)/4來預

igure 2.19的

Figure 2.21

e 4: Horizontal

Horizontal mode

、

類得到差值，進行編碼，其它的行(B

第二章 視訊壓縮標準簡介

 25

Mod

由 (E+F

b 是由 F來預測的。

c,e 是由 (F+G)/2來預測的。

d 是由 G來預測的。

g (G+H)/2

1. Vertical

2. Horizontal

3. DC prediction

法一

樣，只是在第四個模式，是用類似漸層

的方式，以下是它的數學式子。

) + c(j-7) +16]/32
Where:

e 5: Diagonal horizontal -22.5deg

a 是)/2來預測的。

f,

i, 是由 來預測的。

h,j,k,l,m,n,o,p 是由 H來預測的。

由Figure 2.22 的示意圖可表達出以上所陳述的。

另外 16x16 區塊有 4 個模式 P(-

Figure 2.22

1, -1) P(15, -1)

P(-1, 15)

4. Plane prediction

利用的技術和 4x4 區塊的方

Pred (i,j) = [a + b(i-7

z [P(-1,1516a = P(15,-1)]) +×
(H/4)/165 b ×= z

z

z

z (V/4)/165 c ×=

∑
=

−−+−+×=
8

1
))1,7()1,7((

i
iPiPiH

∑
=

−−++−×=
1

)]7,1()7,1([
j

jPjPjV
8

第二章 視訊壓縮標準簡介

 Mode 4 的每一個預測的值都不同，所以這個式子的 i 和 j

就代表 16x16 區塊中的 X、Y 軸，a、b、c、H 和 V 是這個 mode

的參數。

2.3.1.2 prediction mod

、S1、S2 和 S3 各是 A 的上方左方、B 的上

方、 並平均。假若 S0、S1、S2 和

S3 都

A = (S0 + S2 + 4)/8

B = (S1 + 2)/4

D = (S1 + S3 + 4)/8

若只有 S2 和 S3 存在的話，

C = (S0 + 2)/4

的話，

A

C = (S3 + 2)/4

D = (S3 + 2)/4

最後，如果剛好是這四個都不存在，A=B=C=D=128，這四個 A、

Chroma e:

 在 Figure 2.23 中，S0

C 的左方最鄰近的四個點，加起來

存在的話，

A B

C D

S0

S2

S3

Figure 2.23 Chrominance 區塊

預測示意圖

S1

C = (S3 + 2)/4

A = (S0 + 2)/4

B = (S1 + 2)/4

D = (S1 + 2)/4

若只有 S0 和 S1 存在

 = (S2 + 2)/4

B = (S2 + 2)/4

 26

第二章 視訊壓縮標準簡介

B、C、和 D，就是預測值，預測值減去原先的像素值，就是要拿來

mode:

 在 Inter mode 中，有七種不同的區塊大小可以用來做位移補償

(Motion Compensation)，其中在一個 Macroblock 中，依不同的區塊包

含有 1、2、4、8 或 16 個位移向量。一個 Macroblock 分成小的子區

塊的方式，如 Figure 2.24 所示。

我們可以清楚的看到，雖然小的區塊，具有比較大的彈性可以找

到一個與它最像的區塊，但它必須利用 16 個位移向量才可以完成一

個 Macroblock， ，系統必須將所要花

編碼的值。

2.3.1.3 Inter Prediction

所以在決定要用那一種模式之前

0 0 1

1

0 0 1

2 3

0 1 2 3

4 5 6 7

0 1

4 5

2 3
4 5 6 7
8 9 10 11
12 13 14 15

One 16x16 block Two 8x16 blocks

tors)

3
Two 16x8 blocks

(two motion vectors)

Mode 4
Four 8x8 blocks

(four motion vectors)

M
Eig

(eight motion vectors)

de 6

ht motion vectors)

Mode 7
Sixteen-4x4 block

(sixteen motion vectors)

Mode 1 Mode 2 Mode

(one motion vector) (two motion vec

ode 5
ht 4x8 blocks

Mo
Eight-8x4 block

2 3

6 7

(eig

Figure 2.24 Inter coding 7 個區塊模式示意圖

0 1

 27

第二章 視訊壓縮標準簡介

費編位移

z A 是在 E 區塊的左方靠上區塊的位移向量

z C 區塊的對角線右上區塊的位移向量
區塊的反對角線左上區塊的位移向量

量，會做

利用 A、

若 A

所以系統

向量的位元併入考量，這樣才能達到低位元率的效果。

D B C

A

 E

z B 是在 E 區塊的上方靠左區塊的位移向量

z D

為了

、B、

量的編碼效率增加，在每個子區塊所找到的位移向

適當的預測。如果區塊是正方形的(4x4、 及 16x16)，會

、 D 取中間值的方法，來與 E 取差值，進行編碼。倘

移向量剛好在圖片的邊緣，則可能會有不存在的，

有以下的替代方案：

1. 如果 A 及 D 位移向量都不存在，就將這兩個位移向量

的值設為 0。

D、B 及 C 位移向量都不存在，預測值就用 A 位

量。

如果 C 位移向量不存在，就用 D 取代 C。

Figure 2.25 Inter coding 參考向量示意圖

讓位移向

8x8

B C、

C 及 D 位

2. 如果

移向

3.

28

第二章 視訊壓縮標準簡介

8x16 16x8
B

8x4 4x8

C

AA B

A

Figure 2.26 Inter coding 參考向量方向示意圖

若區塊是長條形的(8x16、16x8、4x8 及 8x4)，系統會採取方向性

的預測，現在就逐一以 Figure 2.26 來說明。

8x16 區塊：

左半邊的區塊，用其左上方的 A 位移向量來預測，右半邊的區

塊，用其對角線右上方的 C 位移向量來預測，如果 A 或 C 位移向量

不是與 E 位移向量同一個畫面找到的，那就會採用 A、B、C、D 取

中間值的方法。

16x8 區塊：

上半邊的區塊，用其上方左邊的 B 位移向量來預測，下半邊的區

塊，用其左上方的 A 位移向量，如果 A 或 B 位移向量不是與 E 位移

向量同一個畫面找到的，那就會採用 A、B、C、D 位移向量取中間

值的方法。

8x4 區塊：

左半邊四個白色的區塊，是用其附近 A、B、C、D 位移向量取中

 29

第二章 視訊壓縮標準簡介

間值的方法，有顏色的部份是利用其左邊的 A 位移向量。

4x8 區塊

上半部四個白色的區塊，是用其附近 A、B、C、D 位移向量取中

間值的方法，有顏色的部份是利用其上方的 B 位移向量。

 假如，方向性預測區塊的預測值有不存在的，就同樣利用正方形

區所採用的方法。

2.3.2 Transform Coding
2.3.2.1 4x4 Integer DCT Transform

 不論是 Intra或 Inter mode，殘餘的訊號利用 Integer DCT (見 Figure

2.27) 進行訊號能量的集中。它的功能如同一般的 DCT，不同的是它

在反轉換的時候，在解碼端得到的結果和編碼端相同，這樣就不會產

生 Mis-match 的結果。過往 DCT 轉換都是做在 8x8 區塊上，如今將

轉換做在 4x4 區塊上，可降低在轉換上的計算的複雜度，並且在畫面

的邊緣少一些編碼的誤差。

a' = 13A + 17B + 13C + 7D

b' = 13A + 7B - 13C – 17D

c' = 13A – 7B – 13C + 17

d' = 13A – 17B + 13C - 7D

A = 13a + 13b + 13c + 13d

B = 17a + 7b - 7c - 17d

C = 13a - 13b – 13c + 13d

D = 7a - 17b + 17c - 7d

1-D Integer Transform 1-D Inverse Integer Transform

 Figure 2.27 1-D Integer Transform and Inverse Transform

 30

第二章 視訊壓縮標準簡介

利用一維的 Integer 轉換，可在水平的像素上做一次，再在垂直的

像素上做一次，即可得到轉換過後二維的係數。而反轉換也是利用同

樣的原理，只是反轉換出來的值是先前的 676 倍(ex. a' = 676a)。

2.3.2.2 2x2 transform of chroma DC coefficients

之前 4x4 Integer 轉換是用在亮度(Luma)上，H. 26L 特別為了提昇

彩度(Chroma)部份品質，彩度部份在編碼時，其在 U 及 V 的部份各

有 4 個 DC 值，將各自 4 個 DC 值，再做一次轉換，而有 2x2 transform

for chroma (見 Figure 2.28 與 Figure 2.29)。

Luma residual coding 4x4
block order

VU

Chroma residual coding 4x4
block order

1
7

1
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
5

1
4

1
3

1
2

1
1

1
0

9 8

7 6

5 4

3 2

1 0 2x2 DC

AC

Figure 2.28 Luminance and Chrominance 編碼示意圖

 31

第二章 視訊壓縮標準簡介

DC0 = [DCC(0,0)+ DCC(1,0)+ DCC(0,1)+ DCC(1,1)]/2

DC1 = [DCC(0,0)- DCC(1,0)+ DCC(0,1)- DCC(1,1)]/2

DC2 = [DCC(0,0)+ DCC(1,0)- DCC(0,1)- DCC(1,1)]/2

DC3 = [DCC(0,0)- DCC(1,0)- DCC(0,1)+ DCC(1,1)]/2

1-D 2x2 Inverse transform for DC Chroma

DCC(0,0) = (DC0+DC1+DC2+DC3)/2

DCC(1,0) = (DC0-DC1+DC2-DC3)/2

DCC(0,1) = (DC0+DC1-DC2-DC3)/2

DCC(1,1) = (DC0-DC1-DC2+DC3)/2

1-D 2x2 transform for DC Chroma

 Figure 2.29 Chrominace DC Transform

0 1 5 6

2 4 7 12

3 8 11 13

9 10 14 15

0 1 2 5

0 2 3 6

1 3 4 7

4 5 6 7

 Figure 2.30 Simple Scan Figure 2.31 Double Scan

2.3.2.3 Zig-zag scan /Quantization

Simple Scan 使用的時機，除了 Intra coding 亮度(luma)QP<24 的部

份之外，系統都用此形式做 Run Length Coding，如 Figure 2.30。

當系統使用 Simple Scan 在一些 Inter blocks 和 Intra blocks (使用

在較大 QP 值) 去編 VLC 時，從機率的概念來說，用一個位元編

EOB(End of Block)是最適合不過的。但在 4x4 區塊 Intra coding 中，

平均會有一個以上非零的 Coefficients，所以用一個位元去編 EOB，

反而就不是最好的設計。為了要解決此一問題，改成一個 4x4 的區塊

中使用 Double Scan，如 Figure 2.31。

 32

第二章 視訊壓縮標準簡介

 在量化及反量化過程中，在亮度中所用 QPLuma值的間隔不是用等

距的，而是以每個 Step Size 以 12% 増加，換言之，每増加 QP 值在

六個 Step size 之後，QP 值間距比原先增一倍。量化的過程並不採用

的 Dead zone 的方式量化。

QPluma 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
QPchroma 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 18 19 20 20 21 22 22 23 23 24 24 25 25

Figure 2.32 量化對照表

1
0 x0 1

0 x1 0 x0 1
0 x2 0 x1 0 x0 1

0 x3 0 x2 0 x1 0 x0 1

 另外在彩度方面，因為考量人的眼睛

對彩度並不是很敏感，所以在 QPchroma

等於 17 之後，採非等間距的方式 (詳見

Figure 2.32)。
Figure 2.33 UVLC 示意圖

2.3.3 VLC：Universal VLC

UVLC[7]有以下幾個優點：

1. 編解碼有一定的規則，容易辨認其碼字

2. 具有抵抗錯誤的能力

3. 使編碼更有效率

由 Figure 2.33 可看到類似金字塔的架構，並且在每一層中有固

 33

第二章 視訊壓縮標準簡介

定的長度， x0 x1 x2 ….可以是 0 或是 1

元碼字，就是在這一層的編號，若是要完全解碼，就要使用這個式子

NFO -1 (L/2 會判斷在第幾層， 會指在這

層中的編號是幾號，除了在 L = 1 時，INFO 必須要等於 0)。

換言之，我們可以利用此特性，就可辦別碼字，並且也可利用此

隔 個 1 連續出現 強其

抗

.3 n： High /Lo

縮率高，但也大量的增加計算複雜度，所

的複雜度的分 。

In

prediction mode 比較，若是與 Intra16x16 比較，不必加此

，而將 x0 x1 x2 x3組合起來的二

Code_number = 2L/2 + I INFO

一個位元就有 0，若有兩

錯誤的能力。

.4 Motion Estimatio

因 H.26L 視訊標準的壓

，那麼代表有錯，來加

w Complexity 2

以在編碼端有二種不同程度 別，低複雜度及高複雜度

2.3.4.1 Low Complexity

低複雜度，以消耗較少資源計算量，達成壓縮的目的，以下敘述

其詳細過程，說明過程分為 Intra 及 Inter 兩個部份：

tra Prediction mode

Intra 4x4 mode decision： [Dc,Hor,Ver,Diag_RL,Diag_LR,Diag_45]

� 加上 qp 值*24 到 intra_sad 的計算中，主要是為了和 Inter

項。

� 將五種 Mode 用在 16 個 4x4 區塊中。

 34

第二章 視訊壓縮標準簡介

i. 用周圍區塊所用的模式(上及左)，預測現在區塊

會使用哪個機率比較大，式子為

moderediction_Order_of_pQP0(QP) ×

order of prediction_mode 要查 Figure 2.34，並且

這樣的預測都是以二個相鄰的區塊方式進行。

ii. 加上每一個 block 中預測值和實際值相減所得的

iii. 將以上 16 個區塊所算出來的 SAD 值加起來。

iv. 再做完 5 個 4x4 區塊模式後，再互相比較

� 決定了一個模式之後，再和 16x16Intra mode 比較。

� 利用剛才決定的模式，開始編亮度的部份。

16x16) mode deci on： [Dc, Hor, Ver, Plane]

� 完預測之後的 SAD 值，

rd transform。(會包含 16 個區塊 Hadamard

transform 和 DC Hadamard transform)

AD Mode 當做 16x16 的模式。

SAD 值。

(current_intra_sad)。

4 5

2--- 012---

 043152 043512

 B\A outside 0 1 2 3

-- 012--- 01

 0 045--- 041352 104325 230415 304215

 032145 041325 014352

 2 045--- 012345 102345 210345 3021

 045--- 304152 310425 231054 304215 403512 305412

 4 405--- 403512 401532 240351 430512 403512 405312

 5 504--- 540312 015432 201453 530412 450312 504132

 Intra Coding 模式機率表

 outside 0----- 021--- 102--- 201-

 1 045--- 014325 102435 203145

 3

45 042135 013245

Figure 2.34

Intra(si

先算四個 16x16 區塊模式，在做

會用 Hadama

� 取 MiniS

 35

第二章 視訊壓縮標準簡介

� 若 16x16 區塊所得的 tot_intra_sad2 小於 4x4 的

tot_intra_sad 就開始編 16x16 亮度的部份。否則還是會沿

用剛才 4x4 所編的碼，不做 16x16 區塊的編碼。

Inter mode decision：[copy,16x16,16x8,8x16,8x8,8x4,4x8,4x4]

多張畫面而設計的 Weighting。

� Inter mode (7 個 mode, Integer search、half pixel、1/4 pixel)

i. Integer search(只是單純的用 SAD 來算並沒有

用 Haramard Transform)

1. Prediction biased (not center biased)

16x16 並且 candidate=(0,0)，減去 qp*16)

ii. Half、1/4 pixel search (若在 option 中有選

Figure 2.35。

Motion Vector cost(SAD+qp*MV_usebits

去 qp*16)

� 加上 qp 值*min(ref,1)*2 到 Tot_inter_sad 主要是為了預測

2. Motion Vector cost

(SAD+qp*MV_usebits， 如果是遇到

Hadamard，這裹全部都要用)

1. 只搜尋周圍的八個點，見

2.

如果是遇到 16x16 且 candidate=(0,0)，減

 36

第二章 視訊壓縮標準簡介

2.3.4.2 High Complexity

H.26 複雜度的編

碼，以下敘述其詳細過程：

其使用的技術最重要的是用在亮度和彩度的 SSD(the Sun of Squared

Differences)，及 Rate Distortion Lagrange model。

Initi

 2. Motion vector (Inter)

Intra d

� 用

由

實 並記錄所花的

位元。

 A B C

 1 2 3

 D 4 E 5 F
 a b c

h
 G H I

 Figure 2.35 Interpolation

 6 d 7 e 8
 f g

示意圖

L 為了以更低的位元率達到更高的品質，採用高

ate the parameter (Lagrange parameters)

1. Intra mode decision

 ()QPQP
MODE e +⋅⋅= 510/

, 5λ QPP −34

 QPQPe +⋅⋅= 520/5λ QPPMOTION −34,

mo e (4x4)

SSD 算 4x4 五種區塊模式中的失真(Distortion)值，並

最小的失真值，代表 4x4 區塊模式。

� 際去編所得到的最佳模式(Y、U 及 V)，

 37

第二章 視訊壓縮標準簡介

� ag nge_In ra_mode decision 乘上編完各區塊模式所得

的位元，再加上用 SSD 所算出的失真值，此值是為了

其它的 Intra16x16 及 Inter mode 比較。

L ra t

到

和

Intra (16x16)

� 將實際編出來的 _Intra_mode+Y、U、及 V

的Rate*Lagrange_Intra_mode(目的是要和其它的 Intra 4x4

及 Inter mode 比)

Copy(原先的未經編過

� 算其 YUV SSD(哪一張。

� 然後去編碼(若是超過最小的 st，就跳到其它的

mode 去)

� 將實際編出 de+Y、U、及 V

的 Rate*Lag g

� Inter mode (7 modes)

� tot_inter_sad =

(1+2*floor(log(k+1)/log(2)+1e-10)));

� 和 Low complexity search 的過程一樣

� 然後去編(Y、U、V 若是超過最小的 min_rdcost，就跳到

其它的 mode 去)

� 決定那個模式的方法是和 Low complexity 一樣

� 然後決定編的那個模式的 Y(luma)、U 及 V。

mode* Lagrange

較

)

多張 Frame)以決定用

min_rdco

來的 mode* Lagrange_Intra_mo

ran e_Intra_mode(目的是要和 Inter mode 比)

 (int)floor(rdopt->lambda_motion *

 38

第二章 視訊壓縮標準簡介

� 將實際編

桌上型電腦

出來的 mode* Lagrange_Intra_mode+Y、U、及 V

的 Rate*Lagrange_Intra_mode

2.4 H.26L 複雜度分析

這個分析主要是針對低複雜度來做測試，基本上以下面的參數使

用 Intel VTune Performa 體來測驗。

測試的環

AM 128M

H.26L 參數 (Reference Software: TML8.0)

 使用 Sequence Foreman

Image format: QCIF

Frame Skip 2 (總共 100 張 Frame)

Hadamard transform: Not used

Reference frames used in P prediction: 1

 Sequence type: IPPP (QP: I=17, P=17)

 Entropy coding method: UVLC

 Search range restrictions: none

 RD-optimized mode decision: Low Complexity

 MV resolution: 1/4-pel

nce 測試軟

境

使用 Pentium III 733

 R

 Blocktype: 7 modes

 39

第二章 視訊壓縮標準簡介

93%

motion estimation

Prediction

Interpolation

 H.26L整體複雜度評估圖

4% 2%
1%

MakeIntra

Others

Figure 2.36

由

3%

77%

3%

7%
6% SetMotion Vector

Predictor

Search

ck

FastInteger Search

 Search

Quarter Pixel Search

4%
Setup Fast Integer

SetLargerBlo

Half Pixel

Figure 2.36 的百分比圖可看出，Motion Estimation 佔了百

分之九十三的壓縮時間，其它的部份分別是 Interpolation 百分之

四，Intra Coding(MakeIntraPrediction) 其它包含 Integer

百分之一，

40

Figure 2.37 H.26L位移估計複雜度評估圖

第二章 視訊壓縮標準簡介

DCT、U

接著 項，由於程式中的 Integer

，一是事先將在搜尋範圍中的 4x4

並且再做一個比較

erSearch)，總共佔了百分之八十四；Half Pixel 和 Quarter

高的壓縮率，但其複雜度太高了[21][22]，若

出尤其是在 Motion

，這也是本論文所要提出的一套方

法來解決此一問題。

VLC 編碼等百分之二。

來看 Motion Estimation 的子

Pixel Searching 是包含兩個部份

區塊中的 SAD 值都把它先計算出來(SetupFastIntegeSearch)，再把

4x4 區塊疊合起來 (SetupLargeBlock) ，

(FastInteg

Pixel 分別佔了百分之七到八。

所以 H.26L 雖有

要真正能夠在即時壓縮上應用，可看

Estimation 上需要快速演算法

 41

第三章 快速位移估計演算法簡介

第三章 快速位移估計演算法簡介

位移估計(motion estimation) 在以位移補償為基礎的視訊編碼標

準上扮演了十分重要的角色，通常是以區塊比對(block-matching)的方

式來處理，所謂的區塊比對是指在處理一張圖片的時候(即一個

frame)，先將 frame 分割成一個個 16x16 的區塊，然後再以此區塊為

單位來預估位移向量。 位移向量是以 current frame 為基準，在

previous frame 有限的區域(±16)內，找尋到最接近並誤差最小的區

塊，然後將兩個 frame 的座標相減，即是位移向量。在找尋最佳位移

向量的過程，我們稱為搜尋演算法(Search Algorithm)。之前所講到的

Inter 模式即是這樣的方式由 previous frame 來預測 current frame，以

達到壓縮資料量的目的。

除了全域搜尋區塊比對演算法(Full Search)外，基本上，應用在

視訊標準上的快速位移演算法，大概分為二大類：1)無失真(Lossless)

快速位移估計演算法，例如連續消除演算法(SEA)[10]，2)失真(Lossy)

快速位移估計演算法，例如三步搜尋演算法[13]。

無失真位移估計演算法，主要是利用其它方式，來取代並降低算

SAD(Sum of Absolute Difference)計算量，其所得的位元率及 PSNR 值

和全域搜尋區塊比對演算法完全相同，並且編碼的速度可快速增加，

但在某些特別的情況，會使加速的效果，沒有這麼好，還可能會徒增

編碼的時間。失真位移演算法，主要是利用 Uni-model Error Surface

Assumption(UESA)，將搜尋範圍中尋找最小值的問題，假定只有一個

區域的最小值 (Local Minimum)，也就是全域的最小值 (Global

Minimum)，但事實上並非如此，所以用此類演算法，所找到的最小

 42

第三章 快速位移估計演算法簡介

值，通常是區域的最小值，所以其速度雖然比無失真快速位移演算法

快，但是因為找到的是區域最小值，所以位元率上升並且畫面品質變

差。

3.1 無失真快速位移估計演算法

以下我們將焦點放在無失真快速位移估計演算法。誠如之前所

言，每一個區塊都必須以搜尋演算法來找尋找最像的區塊，所以我們

可知其重要性。全域搜尋區塊比對演算法(Full Search)是最原始、最

簡單的一種；但相對的，由於全域搜尋區塊比對演算法將 current frame

block的每一點與 previous frame search area的每一點做運算，因此Full

search 得到是最精確的搜尋結果，但計算量十分龐大，所耗的搜尋時

間亦不低。

所以是否可以不要用每一點去相減，來得到最相似的位移區塊，

這就是無失真快速位移估計演算法最重要的精神。

3.1.1 連續消除演算法(SEA)

連續消除演算法(Successive Elimination Algorithm)[10]在 1995 年

被提出，它可以減少全域搜尋區塊比對演算法的高運算量，同時可以

得到和全搜尋比對演算法相同的結果，使它比其它許多必須要犧牲峰

值信號雜訊比 (PSNR)的快速演算法，例如三步搜尋 (Three Step

Search)、鑽石搜尋(Diamond Search)等等，更加吸引人採用。其主要

精神可以以下式表示：

 (1)
),(),(|),(||),(|

|),(),(| n)SAD(m,

1

0

1

0

1

0

1

0

1

0

1

0

nmSum NormnmSBKnjmisjic

njmisjic

N

i

N

j

N

i

N

j

N

i

N

j

≡−=++−≥

++−=

∑∑∑∑

∑∑
−

=

−

=

−

=

−

=

−

=

−

=

 43

(1)式中，K 代表目前區塊中所有像素之強度和，SB(m, n)代表在

搜尋位置(m, n)的候選區塊之所有像素強度的和。對每個搜尋位置(m,

第三章 快速位移估計演算法簡介

n)而言，計算 Sum Norm(m, n)值比計算 SAD(m, n)值要容易許多，因

為所有搜尋位置(m, n)只需要計算 K 值一次，而 SB(m, n)可由左方搜

尋位置之 SB(m-1, n)求出，如(2)所示：

∑∑
−

=

−

=

+−−+−++−=
1

0

1

0
),1(),1(),1(),(

N

a

N

a
bnmsanNmsnmSBnmSB (2)

如果 Sum Norm(m, n)比已計算出來的 SAD 中之最小值 SADmin還

大的話，由(1)式可保證 SAD(m, n)一定比 Sum Norm(m, n)還大，因此

搜尋位置(m, n)的 SAD 計算就可以省略，否則，仍必須計算 SAD(m,

n)。很顯然地，如果一開始就能對移動向量有很好的初始猜測，使一

開始就有一較小的 SADmin 值，則可以省略搜尋位置的機會，有效的

降低運算量，因此，搜尋位置的掃瞄順序變得十分重要。有研究者提

出以移動向量的預測向量為第一個的搜尋位置，預測向量即為左方、

上方及右上方的移動向量的中位數；另有研究者提出以螺旋狀掃瞄

(Spiral Scan)，如 Figure 3.1 所示，來取代傳統的光柵掃瞄(Raster

Scan)，如 Figure 3.2 所示； 然而，若真正的移動向量超出搜尋範圍，

連續消除演算法對搜尋位置的省略比例甚至有可能會低到使該移動

向量之運算時間比全域搜尋區塊比對演算法還要久，Figure 3.3 是連

續消除演算法的流程圖。

 44

第三章 快速位移估計演算法簡介

Figure 3.1螺旋式搜尋 Figure 3.2 柵欄式搜尋

Calculate Sum Norm (m,n)

o s

Skip search
position (m,n)

o s

n

n

SADmin >SAD(m,n)

Calculate
SAD(m,n)

SADmin > Sum Norm(m,n)
Update (m,n) for next search positio
45
Update SADmi

Figure 3.3 連續消除演算法流程圖
N

N

Ye
Ye

第三章 快速位移估計演算法簡介

3.1.2 多階層連續消除演算法

有研究者於西元 2000 年提出多階層消除演算法(Multi- Level

Successive Elimination Algorithm)[11]，其原理為將(1)式修改為下列不

等式：

 (3)

),(Norm Sum),(|),(||),(|

),(Norm Sum M|),(|

|),(),(| n)SAD(m,

1

0

1

0

1

0

1

0

1

0

1

0

1

0

nmnmSBKnjmisjic

nmnmSBqKq

njmisjic

N

i

N

j

N

i

N

j

L

q

N

i

N

j

≡−=++−≥

≡−≥

++−=

∑∑∑∑

∑

∑∑

−

=

−

=

−

=

−

=

−

=

−

=

−

=

其中，一個 NxN 區塊被分成 L 個子區塊，Kq代表在目前區塊中

第 q 個子區塊內所有像素之強度和，SBq(m,n)代表在搜尋位置(m,n)

計算出 M(Multi-level)Sum Norm(m,n)，如果 MSum Norm(m,n)比計算

出來的 SAD 中之最小值 SAD 還大的話，由(3)式可保証 SAD(m,n)一

定比 MSum Norm(m,n)還大，自然也比 SADmin 還大，因此搜尋位置

(m,n)的 SAD(m,n)計算就可以被省略，否則，仍必須計算 SAD(m,n)。

此外，由 (3)式我們可以發現 MSum Norm(m,n)大於或等於 Sum

Norm(m,n)，因此，在相同的掃瞄順序下，多階層連續消除法可更進

一步降低連續消除演算法的運算量，若配合由預測向量開始搜尋或螺

旋狀掃瞄，多階層連續消除演算法搜尋位置省略比率在 50%~90%，

隨著不同的的視訊樣本會有不同的值，且不同的畫面間的省略比例也

不同，這個特點和連續消除演算法是一樣的。每個移動向量估計所需

的值不相同且無法預測。

多階層連續消除演算法的流程圖和連續消除演算法幾乎完全相

同，只要將 Figure 3.3 中的 Sum Norm(m,n)改成 MSum Norm(m,n)即

可。因此，連續消除演算法會遭遇到的問題，多階層連續消除演算法

也會有相同的情況。

 46

第三章 快速位移估計演算法簡介

3.1.3 一維投影區塊比對演算法(1D-Projection)

Figure 3.4 一維區塊投影比對演算法
M. Brunig 在西元 2000 年提出一維投影區塊比對演算法 [12] ，

其原理由下式來說明：

()

),(

,

1

0

,,
1

0

1

0

,
,

,
,

1

0

1

0

,
,

,
,

dydxPMADPRPCRC

RCdydxMAD

hh v

h v

B

i

dyydxx
i

yx
i

B

i

B

j

dyydxx
ji

yx
ji

B

i

B

j

dyydxx
ji

yx
ji

=−≥−=

−=

∑∑∑

∑∑
−

=

++
−

=

−

=

++

−

=

−

=

++

(4)

其所使用的方法，主要是將一個NxN的 block中的一整行Column

做相加，類似投影的方法，相加所留下來的數值分別為 PCx,y 及

PRx+dx,y+dy，這樣就可使二維的區塊比對變成一維區塊，降低其計算

量，如 Figure 3.4 所示，再由(4)中可看到類似在 SEA 演算法中出現

的不等式，只是現在是以一個 Column 做相加而非一個 Block。同樣

用此方法也會遇到和 SEA 演算法的困擾，所以初始的猜測變得很重

要。

 47

第三章 快速位移估計演算法簡介

3.1.4 部份區塊比對演算法(PDE)

主要是利用當二個 Current 區塊和 Previous 區塊在算 SAD 時，在

每算完一個Row的SAD值後，做一個檢查的動作，看是不是比SADmin

還要大，如果是真的話就不再計算，而再檢查在搜尋範圍的下一個

點，這種方法類似 Half Stop 的意味[24]。

 48

第三章 快速位移估計演算法簡介

3.2 失真快速位移估計演算法

3.2.1 三步搜尋演算法(3SS)[13]

1981 年由 J. Jain 和 A. Jain 所提出的方法，其作法如 Figure

3.5 所示：

 1 1 1
 3 3 3
 2 2 3 2 3
 3 3 3
 1 2 1 2 1

 2 2 2

 1 1 1

Step 1：當 Pre

三步

Rang

標示

Step 2：接下

點，

素點

標示

Step 3：如前所

此點縮

找出最

Figure 3.5 三步搜尋演算法
vious 和 Current Macro

搜尋演算法會先對整

e) 像素點及原點共九

為 1 的區塊，並判定出

來將目標點轉移到前

並以此點原地縮小範圍

，再次比較其差異度

為 2)

示，我們將目標點再

小範圍，找尋相鄰的

接近點，即為所求。
49
 p
block 開始做搜尋的時候，

個範圍相距 p/2(p:Search

個點做比較，也就是圖中

最接近的區塊。

一步驟所判定出的最接近

，找尋相距 p/4 的八個像

，決定出最接近點。(圖中

次轉移到最接近點，並以

八個像素點，比較其差異，

我們可以看到圖中被紅色

第三章 快速位移估計演算法簡介

所填滿的方塊就是找到的位移向量的位置。

因此，三步搜尋法，每一個區塊所需要搜尋的點數 25 點。

3.2.2 新三步搜尋演算法(N3SS)[14]

 1 1 1

 2 2 2
 1 1 1 2
 1 1 1 1 2 1
 1 1 1

 1 1 1

 Figure 3.6 新三步搜尋演算法

1994 年由 Renxiang Li 所提出的方法；三步搜尋演算法中，在 Step

1 使用平均配置(Uniform)檢查點，但在一般的動態影像中，尤其是在

低位元率中，位移向量通常是 Smooth 及變化緩慢，所以採用所謂

Center biased 的方式來取代平均配置。

Step 1：新三步搜尋演算法會先對整個範圍相距 p/2 (p: Search

Range)的 8 個像素點、原點及原點周圍 8 個像素點做

比較，也就是圖中標示為 1 的區塊，並判定出最接近

的區塊。根據最小 SAD 值的那點，判斷是否要要繼

續檢查，若在 17 個點中，中心點有最小值，則最佳

的點就是中心點，若是在周圍 8 點中的其中一點則跳

到 Step 2，若是在最外的那 8 個點，則跳到 Step3。

Step 2：再以這點檢查周圍的 8 個點，其中有部份的點重複了，

 50

第三章 快速位移估計演算法簡介

所以實際上要檢查的點，只有 3 到 5 點，其中最佳的

點就是有最小 SAD 值，此時即結束整個搜尋過程。

Step 3：而在最外面的 8 個點，則以原本 Three Step Search 的

方式進行。

因此，新三步搜尋法，每個區塊需要 17 到 33 個點。

3.2.3 SES 搜尋演算法[15]

1997 年由 Jianhua Lu 所提出的方法；SES 主要是改進三步搜尋演

算法的平均配置檢查點，提出所謂在 UESA 的情況下相反方向的不需

檢查，也就是是利用方向來找到最小 SAD 值。

Figure 3.7 SES 判斷象限示意圖

Step 1: 和 Three Step Search 一樣，相距原點 p/2 之九個點，但是此

次先檢查三個點，就如 Figure 3.7 所示，A,B,C，再來利用不

等式，如(5)式，來判定尋找的方向，

If MAD (A) >=MAD(B) and MAD(A)>=MAD(C), I is selected

If MAD (A) >=MAD(B) and MAD(A) < MAD(C), II is selected

If MAD (A) < MAD(B) and MAD(A) < MAD(C), III is selected (5)

If MAD (A) < MAD(B) and MAD(A) >=MAD(C), IV is selected

再由 Figure 3.8 所示，先決定好方向，再以其方向加上必要的點

數，並尋找下一個 Step 的最適合的 Candidate。

 51

第三章 快速位移估計演算法簡介

Step 2：依

的

Step 3：和

Figure

到 17 個點。

Figure 3.8 判斷象限後增加點數示意圖
照同樣的方法並以上個所找到的最佳點，將其相距 p/4

八個點，和 Step 1 同樣的方法，先判定方向，再增加點。

Step 1 和 Step 2 類似，但是此次限定相鄰的八個點。

 1 1

 2 2 3
 3 3
 1 2 1

 2

 1

 3.

Figure 3.9 SES 搜尋演算法整體示意圖
9 是 SES 搜尋演算法的例子，每個區塊需要 10

52

第三章 快速位移估計演算法簡介

3.2.4 四步搜尋演算法(4SS)[16]

1996 年由 Lai-Mao Po 所提出的方法，如 Figure 3.10 所示：

 Figure 3.10(a) Figure 3.10(b)

 Figure 3.10(c) Figure 3.10(d)

Step 1：由搜尋區域的中心點開始，如 Figure 3.10(a)所示，以中心

點周圍 5x5 的範圍八個點，找尋誤差最小的點。若最小值

在中心點則跳到 Step 4，否則跳到 Step 2。

Step 2：以 Step1 所找到的最小值為中心，周圍 5x5 範圍八個點，

省略 Step 1 找過的點，如 Figure 3.10(b)、3.10(c)，若最小

值在 Step 2 時的中心點則跳到 Step 4，否則跳到 Step 3。

Step 3：步驟和 Step 2 一樣，只是做完直接到 Step 4。

Step 4： 以上一個 Step 最小值為中心，如 Figure3.10(d)，找尋周

圍八個的點，找到即是此演算法最佳的位移向量的位置。

 53

第三章 快速位移估計演算法簡介

 Figure 3.11 四步搜尋演算法整體示意圖

Figure 3.9 是 SES 搜尋演算法的例子，每個區塊需要 17 到 27 個

點。

3.2.5 鑽石搜尋演算法(DS)[17]

1997 年由 Shan Zhu、Kai-Kuang Ma 所提出的方法，如 Fig 3.12

所示：

 Figure 3.12(a) Figure 3.12(b)

Step 1：由搜尋區域的中心點開始搜尋，由 Figure 3.12(a)的範圍開

始搜尋，找尋最接近的像素點。

Step 2-1：如果找到的點為中心點的話，則原地縮小範圍，以 Figure

 54

第三章 快速位移估計演算法簡介

3.12(b)的範圍繼續搜尋，下一步跳至 step 3-1。

Step 2-2：若非中心點，則以最接近點為中心點，重複 step 1，直

到最接近點為中心點為止。

Step 3-1：如果以 Figure 3.12(b)的範圍，找到的點為中心點的話，

則搜尋結束，並以此點為所求。

Step 3-2：若非中心點，則重複 step 2-1，直到找到的點為中心點

為止。Figure 3.13 中紅色方塊即為所求。

 2
 1 3 2
 1 3 2 3 2
 1 1 3 1
 1
 1

 Figure 3.13 鑽石搜尋演算法整體示意圖

 55

第三章 快速位移估計演算法簡介

3.2.6 區塊梯度搜尋演算法(BBGD)[18]

1996 年由 Lurng-Kuo Liu 和 Ephraim Feig 所提出，如 Figure

3.14 所示：

 4 4 4
 3 3 4 4
 2 3 2 4
 1 1 2 2
 1 1 1 2
 1 1 1

Figure 3.14 區塊梯度搜尋演算法整體示意圖

Step 1：以 Macroblock 的中心點為基準，檢測環繞此點八個像素

的差異值，找出最接近點。

Step 2-1：如果最接近點為中心點的話，結束搜尋。此點即為所

求。

Step 2-2：如果最接近點不是在中心點，則以此點為新的中心，

並再次檢測環繞此點的八個 pixel。

Step 3：重複 step 2，直到結束搜尋。(圖中紅色的方塊，即為所求)

3.2.7 基因搜尋演算法(Genetic Algorithm)[19]

1993 年由 Hung-Kei Chow 所提出，可以說是基因演算法用於移

動向量預估之先河，十分地具有指標性的意義。以下我將就此演算法

做介紹，由這篇論文我們可以發現基因演算法用於移動向量之預估是

可行的。
 56

第三章 快速位移估計演算法簡介

1. Initialization：一開始選取親代的 search point 時，我們以隨機的

方式在 search window 中挑選，挑選的原則是找中心附近的點。

即便 Genetic Algorithm 告訴我們，中心點並不一定是 maximum

optimum，但是在大多數的情況下，maximum optimum 是在中心

附近的。

2. Evaluation & Selection：上一步已經選取若干 search point，並以其

為親代的 chromosomes。接下來將進行物競天擇的繁殖。我們以

某種衡量標準來判斷哪些 chromosomes 是比較優秀，並去除比較

不符合衡量標準的 chromosomes。理所當然的衡量標準，當然還

是 SAD 或 MSE 這兩種廣為人們所使用的方式。於是乎，達成較

小 MSE 或 SAD 的 chromosomes 就可以被保留下來，剩下的將被

去除，如此將可以保證下一代會有比較優秀的子代。

3. Crossover：親代挑選剩下的菁英，彼此再進行交配的動作，在生

物體進行染色體 cross over 時，會發生基因互換的現象。我們可

以藉由另外一篇論文來闡述這樣的觀念，Figure 3.15是出自於 J. A.

Handcock 在 1999 年所發表的論文，我們可以很清楚的看到親代

跟子代 cross over 後交換彼此資訊的互動關係。而[19]則提供一個

實質的方式：

⊕ {(Xp1,Xp2)}= (Xc1,Xc2) ， Xc1=(Xp1 ∩M) ∪ (Xp2 ∩ M) 、

Xc2=(Xp1∩M)∪(Xp2∩M)
 57

第三章 快速位移估計演算法簡介

在這裡各參數的意義如下：

⊕：cross over。

Xp1,Xp2：親代的 search point 位置。

Xc1,Xc2：子代的 search point 位置。

M：一個隨機產生的陣列，而其長度和 chromosomes 一

樣長。

M：是 M 的 inverse。

Figure 3.15 基因演算法交配步驟示意圖

4. Mutation：在此是加入一些變異性，以隨機產生的碼，改變 search

point 的值。這樣做法的原因乃是為了跳離 local optimum，到另外

一個區域。如果另外的地方真的比較好，那麼其子代一定可以通

過天擇的檢驗，否則，仍然會回歸到目前的趨近。Mutation 是這

類 Genetic Algorithm 的精華之所在，也只有這樣，才和一些 fast

search algorithm 有所差距，更容易找到 global optimum。

5. 重複 1-4 的步驟，每重複一次，意味著一個 generation。在一般的

Genetic Algorithm 的使用上，會執行上百個子代，藉由電腦高速

的運算能力來簡化問題。比如在茫茫的資料庫中找尋一粟，如果

要研發出最好的演算法，勢必不易。就算擁有一種不錯的演算

法，其效能卻又不一定會好。但是 Genetic Algorithm 卻保有簡單

 58

第三章 快速位移估計演算法簡介

的執行，分析的方式簡單、判斷的方式亦簡單。所以一般的 Genetic

Algorithm 才會執行上百個世代，但是在視訊系統中，這樣的事情

可不能成立。如我們所知視訊中的 motion estimation，找尋到的

optimum 往往都不會偏離中心太多，因此太多的子代實在不必，

而且太多的子代將會影響到整體的效能，阻礙 real time 的實現。

3.2.8 使用空間域演算法(CAS)[20]

2001 年由 Hyun Mun Kim 所提出，主要是利用周圍已編出來的位

移向量，來縮窄搜尋的範圍。

 MV2 MV3

MV1 MV

Figure 3.16 參考位移向量圖

而會用到幾個數值，如(6)式中的 Motion Predictor，及(7)式中的

周圍三個 MV1, MV2, MV3 的 x,y 最大值和最小值的差值。

)3,2,1(
)3,2,1(

yMVyMVyMVMedianPy
xMVxMVxMVMedianPx

=
= (6)

)3,2,1()3,2,1(
)3,2,1()3,2,1(

xMVxMVxMVMINxMVxMVxMVMAXRx
xMVxMVxMVMINxMVxMVxMVMAXRx

−=
−= (7)

而這個演算法為什麼要用到上面(6)及(7)式，最主要是觀察其周圍

是否有變動量，若有則擴大區域搜尋。以下是演算法的判斷式。

 59

第三章 快速位移估計演算法簡介

If(Px=MV1x) then

 i=1

Else if(Px=MV2x)then

 i=2

Else

 i=3

Endif

If(Py=MV1x) then

 j=1

Else if(Py=MV2x)then

 j=2

Else

 j=3

Endif

If(i=j)then

 Apply motion estimation using 3x3 search window

centered y (Px,Py)

Else

 Apply motion estimation using axb search window

centered by (Px,Py);where default value of a=b=5;

If(Rx<=3)set a=3;

If(Ry<=3)set b=3;

 60

第四章 快速多階連續消除移動預估演算法

第四章 快速多階連續消除移動預估演算法

由於 H.26L 壓縮編碼時間，主要花在搜尋七個不同大小區塊模式

(16x16 - 4x4)的移動估計，所花費的時間是以往以 16x16 為搜尋單位

的數倍，為了要快速的尋找到最佳的位移向量，並且不損失畫面品質

及增加壓縮的位元率，本論文會以連續消除演算法或(多階)連續消除

演算法為出發點，並加以改良使搜尋的速度增快。

以下是本章的簡介，在第一節中，會將(多階)連續消除演算法實

際實現在 H.26L TML8.0 中，並且分析其效能。第二節中，會分析七

個區塊模式在各種情況下所佔的分佈比率。第三節中，會以模式及位

移向量的相似度來分析，利用 8x8 MSEA 在只算出 16x16 區塊模式下

的 SAD 值，暫存並利用其來做為小區塊的搜尋。第四節會以第三節

為基礎，並加以精細位移向量。第五節會以第二節所分析的模式的分

佈，去除可省略搜尋的區塊模式。最後在第六節中，是本論文所提出

快速多階連續消除演算法的流程圖。

4.1 運用連續消除演算法及多階連續消除演算法在

H.26L 的分析
本節會以分析連續消除演算法及多階連續消除演算法，用在

16x16 單一區塊模式上的效率，接著是四個模式及七個模式的分析。

連續消除演算法及多階連續消除演算法，主要有兩個部份為最重要，

 61

第四章 快速多階連續消除移動預估演算法

1)計算區塊 Sum Norm 值，2) 計算不等式條件下區塊 SAD 值。以下

就是本論文的分析。

A. 只啟動一個 16x16 區塊模式編碼

以 16x16 SEA、8x8 MSEA 及 4x4 MSEA 演算法，由以下 Figure

4.1 的流程圖來進行比較及計算，和過往的視訊標準不同的是，

在位移估計部份需要加上位移向量位元數 (motion vector

bit-use)，來使所找出的位移向量可符合 Rate Distortion 的原則。

Comparison
Comparing with predictor point

(beginning point) and then for loop
(spiral shape to search)

Calc
this

No

16x16

Calculate Initial Point: Mvcost (h, v)
plus SAD(h, v) = best_inter_sad

Calculate Sum Norm

Figure 4

best_inter_sad >Sum_Norm(m,n)
ulate Mvcost adding to the sad of
 search point=current_inter_sad

best_inter_sad >Current_inter_sad

Update best_inter_sad

Calculate SAD (m,n)

Yes

.1 將 SEA 演算法放入 H.26L 的流程圖

62

第四章 快速多階連續消除移動預估演算法

我們來比較其所花費的時間，由 Figure 4.2 可觀察到結果。

Figure 4.2 使用一個16x16區塊模式的狀況下，TML8.0、16x16SEA、

8x8MSEA及4x4MSEA壓一張所需要花的時間

8x8 MSEA 所花的時間最短，其次是 16x16 SEA，最後是 4x4

MSEA，都遠比原始 TML8.0 的 Full Search 好，節省了百分之五十以

上的時間，並且由 Figure 4.3 及 Figure 4.4 所示，並沒有增加位元率

或降低畫面品質。

63
Figure 4.3 使用一個16x16模式的狀況下，TML8.0、16x16SEA、

8x8MSEA及4x4MSEA畫面品質的比較

第四章 快速多階連續消除移動預估演算法

Figure 4.4 使用一個16x16模式的狀況下，TML8.0、
16x16SEA、8x8MSEA及4x4MSEA位元率的比較

 而從 Figure 4.2 所示，為什麼 8x8 MSEA 會比其它的 16x16 SEA、

及 4x4 MSEA 快呢？主要是因為 16x16 SEA 花費在算不等式條件下

區塊的 SAD 值太多，可由 Figure 4.5 所示。而 4x4 MSEA 則是花太多

的時間在算 4x4 Sum Norm，可由 Figure 4.6 所示。

64

Figure 4.5 使用一個16x16模式的狀況下，16x16SEA、

8x8MSEA及4x4MSEA所需要檢查的點數

第四章 快速多階連續消除移動預估演算法

Figure 4.6 使用一個16x16模式的狀況下，16x16SEA、

8x8MSEA及4x4MSEA算Sum Norm的時間

Figure 4.7 使用四個模式16x16-8x8的狀況下，TML8.0、
8x8MSEA及4x4MSEA壓一張所需要花的時間

B. 啟動四個區塊模式(16x16-8x8)編碼

而若以四個模式來編碼，由於 16x16 SEA 並沒有小區塊的 Sum

Norm 值，所以無法比較，所以只能用 8x8 MSEA 和 4x4 MSEA 來比

 65

第四章 快速多階連續消除移動預估演算法

較，由 Figure 4.7 所示，4x4 MSEA 所花的時間比較短，其次是 TML8.0

的 Full Search，最後是 8x8 MSEA，並且由 Figure 4.8 及 Figure 4.9 所

示，並沒有增加位元率或降低畫面品質。

Figure 4.8 使用四個模式 16x16-8x8 的狀況下，TML8.0、
8x8MSEA 及 4x4MSEA 畫面品質的比較

Figure 4.9 使用四個模式16x16-8x8的狀況下，TML8.0、

8x8MSEA及4x4MSEA位元率的比較

 66

第四章 快速多階連續消除移動預估演算法

從 Figure 4.10 中，可觀察到 8x8 MSEA 用在四個模式下的編碼速

度蠻差的，主要是因為愈往小區塊去縮窄，直到區塊 8x8 後，8x8 MSEA

的情況就會和 16x16SEA 的情況一樣，所要算的 SAD 值會增多，而在

這個情況下，雖然 4x4 MSEA 所要花費在計算 Sum Norm 的時間比較

多，但是其所要計算 SAD 值的數目會比 8x8 MSEA 少很多。

Figure 4.10 使用四個模式16x16-8x8的狀況下，8x8MSEA

及4x4MSEA所需要檢查的點數

C. 啟動七個區塊模式(16x16-4x4)來編碼

由前面所分析出的結果，當所使用的區塊模式與算 Sum Norm 的

區塊單位愈接近時，MSEA 快速演算法在這個情形下，就會沒有效

率。所以在七個區塊模式時，4x4 MSEA 一定也會比 TML8.0 的速度

慢，可由 Figure 4.11 所示。Figure 4.12 及 Figure 4.13 是表示 MSEA4x4

的位元率和畫面品質 PSNR 是和 TML8.0 Full Search 是一樣的。

 67

第四章 快速多階連續消除移動預估演算法

Figure 4.11 使用七個模式 16x16-4x4 的狀況下，TML8.0、

及 4x4MSEA 壓一張所需要花的時間

Figure 4.12 使用七個模式16x16-4x4的狀況下，TML8.0、
8x8MSEA及4x4MSEA畫面品質的比較

 68

第四章 快速多階連續消除移動預估演算法

 Figure 4.13 使用七個模式16x16-4x4的狀況下，TML8.0、

8x8MSEA及4x4MSEA位元率的比較

所以在本節中下一個小小的結論，就是只要使用的區塊模式愈

多，多階連續消除演算法的效能就會因為要算的 SAD 值過多而無法

達到加速的功效，並且所使用計算 Sum Norm 區塊大小，也會因區塊

逐漸縮小而增長要計算的時間。然而是否可用大區塊有算出

Suboptimal SAD 值的點，加以重覆利用，將也是本論文研究重點。

 69

第四章 快速多階連續消除移動預估演算法

4.2 H.26L 的模式分析

本節中，主要要分析的部份，是分析在各種 Sequence、不同 Frame

skip 的張數、不同的 QP 值、不同的格式大小(QCIF、CIF)，Inter mode

的 7 個模式的機率分佈是如何？首先先將要壓縮位元率環境設定在

中位率，即 QP 值為 17 時，沒有任何 Frame Skip。

No Frameskip (qp=17)

0

25

50

75

100

copy 16x16 16x8 8x16 8x8 8x4 4x8 4x4 Intra

mode

%

Akiyo

Bream(200)

Carphone

Container

Container(cif)

mobile(cif)

Foreman

Figure 4.14 模式分佈 - 中位元率 (No Frameskip)

由 Figure 4.14 所示，各種的 Sequence，包含了 Akiyo (300 張)

QCIF、Bream (200 張) QCIF、Carphone (300 張) QCIF、Container (300

張) QCIF、Container (300 張) CIF、Mobile (300 張) CIF 及 Foreman (300

張) QCIF。而由 Figure 4.14 所示，16x16 及 Copy(Copy 就是當 16x16

區塊位移向量為 0 時)比率佔了絕大多數，依序才是 16x8、8x16、8x8、

8x4、4x8 及最少 4x4 及 Intra。

讓我們來觀察若 Skip 張數増多時，又會如何？

 70

第四章 快速多階連續消除移動預估演算法

Frameskip 1(qp=17)

0

25

50

75

100

copy 16x16 16x8 8x16 8x8 8x4 4x8 4x4 Intra

mode

%
Akiyo
Bream(200)
Carphone
Container
Container(cif)
mobile(cif)
Foreman

Figure 4.15 模式分佈 - 中位元率 (Frameskip 1)

Frameskip 2 (qp=17)

0

25

50

75

100

copy 16x16 16x8 8x16 8x8 8x4 4x8 4x4 Intra

mode

%

Akiyo

Bream(200)

Carphone

Container

Container(cif)

mobile(cif)

Foreman

Figure 4.16 模式分佈 - 中位元率(Frameskip 2)

由 Figure 4.15 及 Figure 4.16 所示，Copy 及 16x16 還是佔了絕

大多數，但可以由圖中注意到，當 Frameskip 張數増多之後，copy

及 16x16 的數目會減少，主要是因為跳的張數增多之後，位移的

機率増加並且位移的量也增大，所以會使用到較小的區塊來編

碼。

而在低位率時模式的選擇(QP 值等於 30)又是如何，可由

Figure 4.17、Figure 4.18、Figure 4.19 所示，和中位元率模式選擇

 71

第四章 快速多階連續消除移動預估演算法

不同的地方是，16x16 模式增多了，並且在 8x8 以下區塊的模式

幾乎沒有了。同樣的，當有 Frame skip 時，位移量增多，就比較

需要用較小的區塊去編碼，但在低位元率只需要用到 8x8 以上的

區塊模式就已經足夠了。

No Frameskip (qp =30)

0

25

50

75

100

copy 16x16 16x8 8x16 8x8 8x4 4x8 4x4 Intra

mode

%

Akiyo
Bream(200)
Carphone
Container
Container(cif)
mobile(cif)
Foreman

Figure 4.17 模式分佈 - 低位元率 (No Frame skip)

Frameskip 1(qp=30)

0

25

50

75

100

copy 16x16 16x8 8x16 8x8 8x4 4x8 4x4 Intra

mode

%

Akiyo

Bream(200)

Carphone

Container

Container(cif)

mobile(cif)

Foreman

Figure 4.18 模式分佈 - 低位元率 (Frameskip 1)

 72

第四章 快速多階連續消除移動預估演算法

Frameskip 2 (qp =30)

0

25

50

75

100

copy 16x16 16x8 8x16 8x8 8x4 4x8 4x4 Intra

mode

%

Akiyo

Bream(200)

Carphone

Container

Container(cif)

mobile(cif)

Foreman

Figure 4.19 模式分佈 - 低位元率 (Frameskip 2)

而從以上的圖，所選用的模式幾乎都用較大的區塊，那究竟何時

才會有大量使用較小的區塊來編碼，原來可由 Mode selection motion

vector cost 看出，因為在估測每一個模式時，都會加上 Mvcost，如下

式：

Mvcost=QP * MVBitUse(x,y)

所以當要使用較小的區塊編碼時，其 Motion Vector 數量會增加，

而増加其 SAD 值的 Weighting，所以在中低位元率中，也就是 QP 值

較大時，不輕易使用小的區塊編碼。但在高位率中，尤其是在 QP 值

小於 5，小的區塊的效應就會明顯的増強，如 Figure 4.20、Figure 4.21、

Figure 4.22 所示。如較靜態的 Akiyo、Container 及 Container(cif)多數

還是在 16x16-8x8 之間，但在較動態的 Bream、Carphone、Mobile、

Foreman，就會有出現用比較小的區塊去編碼。

 73

第四章 快速多階連續消除移動預估演算法

No Frameskip (qp=2)

0

20

40

60

80

copy 16x16 16x8 8x16 8x8 8x4 4x8 4x4 Intra

mode

%
Akiyo

Bream(200)

Carphone

Container

Container(cif)

mobile(cif)

Foreman

Figure 4.20 模式分佈 - 高位元率 (No Frameskip)

Frameskip 1 (qp 2)

0

20

40

60

80

copy 16x16 16x8 8x16 8x8 8x4 4x8 4x4 Intra

mode

%

Akiyo

Bream(200)

Carphone

Container

Container(cif)

mobile(cif)

Foreman

Figure 4.21 模式分佈 - 高位元率 (Frameskip 1)

Frameskip 2 (qp 2)

0

10

20

30

40

50

copy 16x16 16x8 8x16 8x8 8x4 4x8 4x4 Intra

mode

%

Akiyo

Bream(200)

Carphone

Container

Container(cif)

mobile(cif)

Foreman

Figure 4.22 模式分佈 - 高位元率 (Frameskip 2)

 74

第四章 快速多階連續消除移動預估演算法

所以同樣也在此下一結論，1)愈多張的 Frameskip 會造成位移量

增多，使用大區塊(16x16)模式編碼的機率降低。2) 另外一方面，在

低位元率時，使用 16x16-8x8 模式已經是幾乎足夠了，並且不大需要

8x8 以下的模式，但在中高位元率時，就需要七個模式都必須開啟，

因為會出現一部份使用 8x4、4x8 及 4x4 等模式。

然而在各種情況下，模式的分佈都不一樣，但在一般的情況中，

用大區塊(16x16)來編碼，佔了一定的使用機率，所以若能將大區塊

的位移向量，做良好的預測，並且利用其搜尋後的一些特性，來預測

小區塊的位移向量，這樣就或許可以達到加速的效果，並且可以有一

定的畫面品質及減少位元率的増加。

 75

第四章 快速多階連續消除移動預估演算法

4.3 運用既有連續消除消除演算法所算出的 16x16

SAD 值來降低複雜度

由 4.1 及 4.2 節所得的結果，可知 MSEA 會因為模式的增加，造

成壓縮時間的增長，以及在模式的分佈中，以 16x16 區塊模式為最主

要使用的模式。所以我們先分析用TML8.0 (Full Search)，在單一 16x16

區塊模式來進行編碼，並與四個模式及七個模式的差別。採用的

Sequence 是 Foreman。

Figure 4.23 以Foreman Sequence使用1 Mode、4 Mode及7 Mode
的Rate Distortion分析

 76

第四章 快速多階連續消除移動預估演算法

 由 Figure 4.23 及 Figure 4.24 可知，subblock motion search 可降低

位元率，並且可以在一定的位元率下，有更好的畫面品質。另一方面

也可觀察到，誠如在 4.2 節所分析的，subblock 只佔了一些部份，若

能將 16x16 預估準確，其餘的 subblock 可利用在 16x16 區塊模式下，

所算出的 SAD 值，並且將此 SAD 值以 4x4 區塊為儲存的單位，這樣

在小區塊的搜尋中，只需要將 4x4 區塊的 SAD 值，如同疊積木的，

算出該模式大小的 SAD 值，來做為該區塊模式找尋精細位移向量

(Motion Refinement)的起始點比較來源。

Figure 4.24 以Foreman Sequence在各種位元率下使用1 Mode、4
Mode及7 Mode所得到降低位元率比例圖

所以我們先觀察使用 SEA (or MSEA) 在 16x16 區塊搜尋後，所

 77

第四章 快速多階連續消除移動預估演算法

 78

PSNR 值，所以本論文在 16x16 區塊的位移估計採用 8x8 MSEA。回

算得的 suboptimal、optimal 位移向量的 SAD 值，是否正確命中

subblock 的最佳位移向量。那麼如何快速得到 16x16 區塊模式的最佳

位移向量及殘餘的 SAD 值呢？如 4.1 節所得的結論，8x8 MSEA 在

16x16 區塊模式中可以得到較好的加速並與 FS 有同樣的位元率及

到之前所談的，在 16x16 區塊利用 8x8 MSEA 所儲存下來的 SAD 值

中，是否可以命中以 FS 在 subblock 所找到的 optimal 的位移向量？

由 Figure 4.25 和 4.26，表示利用 8x8 MSEA 及其殘留資訊可找到最

佳模式及最佳位移向量的百分比。由此兩圖中，在低位元率(QP 值大)

時，所得到的效果不錯，可達九成，但當 QP 值慢慢變小時，也就位

Figure 4.25 使用8x8 MSEA搜尋16x16區塊模式，並使用所得的SAD值

繼續搜尋16x8 – 4x4區塊模式，並和TML 8.0區塊模式的準

確度

第四章 快速多階連續消除移動預估演算法

元率昇高時，利用殘餘的資訊，就無法有效並準確的找到最佳的模式

及位移向量。主要的原因可由 4.2 節所描述的，在中高位元率時，小

區塊模式增加，所以更需要在小區塊中搜尋，因此必須加入精確

(Refine) 位移向量的動作。

再由 Figure 4.27 來比較 Full Search 和利用 8x8MSEA 所殘留

下 SAD 搜 式分佈 x16 模 模式增

加， 6x16 以下的模式所佔的比率都降低，愈小區塊模式降低

愈多，主要是因為利用 16x16 所搜過的 SAD 值，來求得小區塊

的位移向量因資訊不足而不夠精確，所以必須要作局部的

Figure 4.26 使用8x8 MSEA搜尋16x16區塊模式，並使用所得的SAD值繼續

搜尋16x8 – 4x4區塊模式，並和TML 8.0位移向量的準確度

尋結果的模 ，可知 16 式和 Intra

而 1

Refinement，以增進其準確度。

 79

第四章 快速多階連續消除移動預估演算法

Figure 4.27 以 8x8MSEA 來搜尋 16x16 區塊模式，再利用其殘餘的

SAD 值，往下搜尋小區塊的位移向量，與 TML8.0 所

產生模分佈的差異圖

2.094

8.767

-5.403
-2.44

1.46

-4.4

-13.19
-9.02

28.57

-20
-15
-10

-5
0
5

10
15
20
25
30
35

Mode

In
cr

ea
si

ng
 P

er
ce

nt
ag

e(
%

)

 copy
16x16
16x8
8x16
8x8
8x4
4x8
4x4
Intra

4.4 精細小區塊的位移向量(Motion Refinement)

誠如 4.3 節所述，雖可以重覆利用 16x16 區塊所計算出來的 SAD

值，但所找到的各區塊模式的 Suboptimal 位移向量不夠精準，所以

還是有必要局部搜尋，以增進位移向量的精確度。而要找的各區塊模

式的最佳位移向量離所找到的 Suboptimal 位移向量有多遠，可由

Figure 4.27 看出，0x0代表完全命中，3x3表示離開此點的一個Pixel

距離的位置，以此類推。並且為了確保正確，我們利用不同的 QP 值

來測試其在高位元率及低位元率是否如此。位移向量完全相同的百分

比，會因為高低位元率(QP 值的大小) 而有不同，但由其周圍附近

可找到最佳位移向量機率很大，尋找周圍八個點就可以有百分之七十

至九十的機會，可以找到最佳的點，所以在此印證，有必要對小區塊

位移向量做精細的動作，以得到最佳的位移向量。

 80

第四章 快速多階連續消除移動預估演算法

Figure 4.28 以16x16所搜尋過的點，利用其SAD值，往下搜尋小區塊的位移

向量，得到其中最小的一個，圖中的距離就是TML8.0和上述方

法的距離統計圖

由於是局部的搜尋，所以想取得增加搜尋點數及增加效能之間的

最佳平衡點，所以本論文使用了三個不同的方法來進行精確的動作。

分別是以 3x3、5x5 為搜尋視窗及二步搜尋法，如 Figure4.29 ~

Figure4.31 所示。

Figure 4.30 5x5 搜尋視窗Figure 4.30 5x5 搜尋視窗

Figure 4.29 3x3 搜尋視窗Figure 4.29 3x3 搜尋視窗

 81

第四章 快速多階連續消除移動預估演算法

 82

Figure 4.31 二步搜尋法Figure 4.31 二步搜尋法

再由 Figure 4.32 中，可以觀察到，在中高位元率下，使用 3x3

搜尋視窗來做為精確小區塊位移向量的效能，可使位移向量相似度從

百分之五十增至百分之七十。而以 5x5 搜尋視窗及二步搜尋法 (類似

三步搜尋法)，所提昇的百分比，效能會以線性的上昇，也就是所搜

尋的點數，會因為所找的點數而有增加，但時間花費也會因此增加。

所以本論文會以 3x3 搜尋的範圍，來精細小區塊的位移向量。

Figure 4.32 利用周圍3x3 、5x5 search window及2SS(two step search)的
方式來進行精確小區塊中的位移向量相似度的比較

第四章 快速多階連續消除移動預估演算法

4.5 中斷決策(Half Stop Decision)

由 4.2 節中模式分析中，可知一般模式的分佈是以 16x16 為最

多，其次是 16x8、8x16、8x8，再來 4x8、8x4，及 4x4 的數目就是少

數了，所以是否可以減少要搜尋的模式，成為本節中的重點。一般而

言，最佳的模式若是小區塊的話，代表區塊中有細部的微動量，並且

程式在搜尋時都以大區塊為第一優先之後，才去搜尋小的區塊，所以

我們可以利用當區塊漸漸縮小搜尋時，去檢查最佳移動向量是否有往

小區塊模式發展的趨勢，若沒有的話，程式就立刻停止並且換下一個

macroblock 去編碼。由 Figure 4.33，代表若搜尋 8x8 區塊時，搜尋完

之後，若是最佳的模式，這代表區塊要往下分的趨勢，此時我們就繼

續往小區塊搜尋，否則，8x4、4x8 及 4x4 這三個模式的搜尋，則可

省略，以增加編碼效能。再從 Figure 4.34 看到，用中斷決策可達到八

成的準確率，所以可用這個機制來減低搜尋小區塊的計算量。

No

Yes

Half-stop
decision:

Is Mode 4 chosen?
Continue searching
Mode 5 to Mode 7

 Skip searching Mode 5 to Mode 7

Figure 4.33 Half stop decision 流程圖

 83

第四章 快速多階連續消除移動預估演算法

Figure 4.34 利用Half stop decision 判斷成功的機率

4.6 快速多階連續消除演算法流程圖

本論文所提出的方法，是結合多階連續演算法、Motion

Refinement 及 Half-Stop Decision，其最主要是要改善如 4.1 節中，(多

階)連續消除演算法在 H.26L 多重模式移動預估的環境中，所造成加

速效果不佳的狀況、所算的 SAD 值太多的情況。主要利用的方法，

有四：1)利用 8x8 多階連續演算法來尋找大區塊(16x16)的最佳的位移

向量，2)再利用尋找大區塊位移向量時在中間過程所算出的 SAD 值，

求出其它小區塊中的 Suboptimal 的位移向量。3)再將 2)中，所找出的

位移向量進行 Motion Refinement，Refinement 的方法是使用 3x3 搜尋

視窗法 4)利用較大區塊的搜尋結果，來決定是否要繼續搜尋小區塊的

位移向量，即所謂的 Half-Stop Decision，整個 FMSEA 的完整流程圖，

 84

第四章 快速多階連續消除移動預估演算法

請見 Figure 4.35。

Store intermediate SAD(m,n) values

Apply 8x8 MSEA to Mode 1
 motion search

Calculate 8x8
sum norm

Yes Half Stop
decision:

Is Mode 4 chosen?

Find suboptimal points and
corresponding motion refinement

for Mode 5 to Mode 7

Find suboptimal points and
corresponding motion refinement

for Mode 2 to Mode 4

Finish a MB motion
estimation

Figure 4.35 快速多階連續消除移動估計演算法流程圖

 85

第五章 實驗結果與討論

第五章 實驗結果與討論

在前面我們詳細地介紹了已發展出來的快速演算法及本論文所

提出的快速多階連續消除演算法。接著本章要進行模擬，並且且討論

所得到的數據。

5.1 環境參數與所使用的視訊樣本

視訊樣本的種類有很多種，可由 Table 5.1 得知樣本的分類，其中

有動作較慢的、較快的及在空間域上較複雜的。

Table 5.1 視訊樣本的分類表

Sequence
Name

Class
Sequence

Name
Class

Sequence
Name

Class

Akiyo A Carphone B Fun Fair D
Container

Ship
A

Table
Tennis

C Bream E

Foreman B Stefan C Weather E

News B
Mobile &
Calendar

C

Silent
Voice

B Football C

Coastguard B Tunnel D

Class A: Low spatial detail and low amount of movement
Class B: Medium spatial detail and low amount of movement or vice versa
Class C: High spatial detail and medium amount of movement or vice versa
Class D: Stereoscopic
Class E: Hybrid natural and synthetic

本論文所使用的視訊樣本，有 Class A Akiyo、Class B News、

 86

第五章 實驗結果與討論

Carphone、Foreman、Class C Stefan、Class E Bream。由於手上並沒

有 Class D 的視訊樣本，所以暫時無法測試。

Class A Akiyo Class B News

Class B Carphone Class B Foreman

Class C Stefan Class E Bream

系統模擬環境，列於以下：

CPU：1GHz Pentium Ⅲ

Memory：256MB SDRAM

 87

第五章 實驗結果與討論

OS：Microsoft 2000 Server + Service Pack 2

Compiler：Intel C++ 6.0

H.26L(TML8.0)上的參數：

Sequence type：IPPP

Image Format：QCIF

Frame Rate：10 fps

Reference frames used in P prediction： 1

Blocktytype: 7 modes

Hadamard transform： Not used

Search range restrictions: none

MV Resolution: 1/4-pel

RD-optimized mode decision: Low Complexity

Search Range in motion estimation：16 for 10fps

Entropy coding method: UVLC

QPs used：9、12、15、18、20 and 23

所有測試編碼器執行的時間是使用 Ansi C clock() funtion。

 88

第五章 實驗結果與討論

5.2運用快速多階連續消除移動預估演算法加速的效果

 在本節中，主要目的是要顯示本論文所提出的快速多階連續消除

演算法的加速效果，分別會以全域搜尋(Full Search)、多階連續消除

演算法(MSEA)、三步搜尋法(3SS)、四步搜尋法(4SS)、鑽石搜尋(DS)

與本論文所提出之方法做比較。比較基準是以每壓一張 Frame，做為

比較的標準，至於為何不使用檢查點(check point)，作為比較的標準，

是因為多階連續消除演算法，所要算的 sum norm 量無法轉換成檢查

點，並且本論文所提出的中斷模式(Half Stop)，會使得較小區塊的三

個模式區塊不做，而會使實驗的比較，較不為客觀。以下是實驗結果

的分析，由 Figure 5.1 至 Figure 5.6，分別依序是 Akiyo、News、

Carphone、Foreman、Stefan 及 Bream，在不同 Rate 之下壓縮所花費

時間圖。最後再由 Table 5.2，來總結各種快速演算法加速的效果。

 89

第五章 實驗結果與討論

Akiyo

Figure 5.1 各種快速演算法用在 Akiyo Sequence 編碼時間的比較

News

Figure 5.2 各種快速演算法用在 News Sequence 編碼時間的比較

 90

第五章 實驗結果與討論

Carphone

Figure 5.3 各種快速演算法用在 Carphone Sequence 編碼時間的比較

Foreman

Figure 5.4 各種快速演算法用在 Foreman Sequence 編碼時間的比較

 91

第五章 實驗結果與討論

Stefan

Figure 5.5 各種快速演算法用在 Stefan Sequence 編碼時間的比較

Bream

Figure 5.6 各種快速演算法用在 Bream Sequence 編碼時間的比較

 92

第五章 實驗結果與討論

 Table 5.2 各種快速演算法編碼張數比較表

Algorithm

Sequence

TML
8.0

MSEA
(4x4) 3SS 4SS DS FMSEA Ratio

(FMSEA/TML8.0)

Akiyo 2.22 1.54 4.12 5.3 5.96 6.48 291%
News 2.15 1.49 4.1 5.21 5.9 6.28 292%

Carphone 2.13 1.47 3.95 4.78 5.12 5.55 260%
Foreman 2.19 1.33 3.95 4.49 4.75 5.54 253%

Stefan 2.20 1.26 3.84 4.34 4.54 4.04 184%
Bream 2.08 1.30 3.98 4.78 5.17 5.15 248%

Average 2.16 1.40 3.99 4.81 5.24 5.51 255%

由 Figure 5.1 到 5.5 及 Table 5.2 實驗數據顯示，在 Class A 及 B

的視訊樣本中，本論文所提出的方法，皆有較快的加速效果，而在

Class D、E 中加速的效果稍微差了一點，主要的原因，是因為 Stefan

和 Bream 是屬於較動態的視訊樣本，而使得在 16x16 區塊模式，要

多增加一些檢查點，來算 SAD 值，而所增加的檢查點數是否會增加

編碼器的效能，答案是肯定的，可由下一節的實驗結果發現，本論文

所提出的方法，雖然在較動態視訊樣本下，加速沒有這麼的快，但在

位元率比對畫面品質 (Rate distortion) 的比較上有極佳的表現。

 93

第五章 實驗結果與討論

5.3 Performance 評估

 在上節中，討論用不同方法所得到的加速效果，本節中則以探討

不同的方法，所造成位元率昇高及畫面品質的降低為主。測試的標

準，是以 Rate-Distortion 的方式來評比。由 Figure5.7 到 5.16，依序是

Akiyo、News、Carphone、Foreman、Stefan 及 Bream。

以 Class A 的 Akiyo 及 Class B 的 News 來說，由於這兩個視訊

的樣本是較靜態的，所以所有比較的方法的效能差異不會很多。但從

Class B Carphone 開始到 Class E Bream 中，就可以看出在各快速演算

法增加編碼器的速度之際，所犧牲壓縮效能及畫面品質為如何。以較

明顯的 Class B 的 Foreman、Class C Stefan、及 Class E Bream 來說，

在相同的位元率下，三步搜尋法、四步搜尋法及鑽石搜尋法，分別使

畫面的品質下降了 1-2dB (3SS)、0.5-1dB(4SS)、0.5-0.6dB(DS)，而由

本論文所提出的方法，其效能和全域搜尋 (Full Search)演算法的效能

幾乎相同，最主要是原因是本論文有效掌握 H.26L 在多個模式的特性

而使得搜尋到的位移向量比其他的快速演算法更為精確，並極為趨近

於 TML8.0(Full Search)的搜尋結果。

 94

第五章 實驗結果與討論

Akiyo

Figure 5.7 各種快速演算法用在 Akiyo Sequence Rate-Distortion 的比較

News

Figure 5.8 各種快速演算法用在 News Sequence Rate-Distortion 的比較

 95

第五章 實驗結果與討論

Carphone

Figure 5.9 在高位元率，各種快速演算法用在 Carphone Sequence

Rate-Distortion 的比較(1)

Figure 5.10 在中位元率，各種快速演算法用在 Carphone Sequence
Rate-Distortion 的比較(2)

 96

第五章 實驗結果與討論

Figure 5.11 在低位元率，各種快速演算法用在 Carphone Sequence

Rate-Distortion 的比較(3)

Foreman

Figure 5.12 在中高位元率，各種快速演算法用在 Foreman Sequence

Rate-Distortion 的比較(1)

 97

第五章 實驗結果與討論

Figure 5.13 在中低位元率，各種快速演算法用在 Foreman

Sequence Rate-Distortion 的比較(2)

Stefan

Figure 5.14 各種快速演算法用在 Stefan Sequence Rate-Distortion 的比較

 98

第五章 實驗結果與討論

Bream

Figure 5.15 在中高位元率，各種快速演算法用在 Bream Sequence

Rate-Distortion 的比較(1)

Figure 5.16 在中低位元率，各種快速演算法用在 Bream Sequence

Rate-Distortion 的比較(2)

 99

第五章 實驗結果與討論

一般來說，失真性快速演算法會造成位元率昇高及畫面品質的降

低，但由以上的實驗數據可知，本論文所提出快速多階連續消除移動

預估演算法，比對全域搜尋法 (Full Search) 所要增加的位元率及畫

面品質的降低極少，並且加速編碼器的速度，到達平均 2.5 倍，是比

其它的快速演算法更適合應用在低位元率高畫質的視訊標準 H.26L

上，所以本論文所提出的方法，是兼具效能及速度的要求。

 100

第六章 結論與未來展望

第六章 結論與未來展望

本論文以多階連續消除演算法為基礎，搜尋大區塊 16x16 區塊，

並配合著本論文所特有的 Motion Refinement 及 Half Stop Decision 的

方法，在損失極小壓縮效能及畫面品質的狀況下進行加速。

雖然，本論文所提出的方法，無法在實驗的數據上，達到即時壓

縮的目標，但與其它的快速演算法比較，是值得用在視訊標準 H.26L

上。接下來，我們由 Table 6.1 來觀察哪些地方，還需要加速及改進。

Table 6.1利用FSEA在H.26L上所得到各Function的時間
Function Time(ms)
Interpolation 50
Motion Search 70-100

Sum Norm 30
Integer Search 9-39ms
Half-Pel Search 16

 Quarter-Pel Search 15
Intra prediction 10-11
Others 30

最重要的部份是要改進，Interpolation 和 Motion Search 這兩個部

份，而這兩個部份可利用硬體的方式來加速，若你使用的系統是

DSP，則可使用平行處理的指令集，若你用的是個人電腦，則可選擇

使用 MMX 的指令集，來進行加速，方可使 H.26L 真正運用於即時的

壓縮上。

 101

參考文獻

[1] ITU-T Recommendation H.261: Video Codec for Audiovisual

Services at Px64 Kbits, ITU, 1993.

[2] Draft ITU-T Recommendation H.263: Video Coding for Low

Bitrate Communication, ITU, May 1996.

[3] Draft ITU-T Recommendation H.263+: Video Coding for Low

Bitrate Communication, ITU, July 1997.

[4] ISO/IEC JTC1, Generic Coding of Audiovisual Objects –Part 2:

Visual(MPEG-4 Visual), ISO/IEC 14496-2, Version 1: January

1999; Version 2: January 2000; Version 3: January 2001

[5] ITU-T/SG 16/VCEG, Video Codec Test Model Long Term

Number 8(TML-8). Doc, VCEG-N10, July. 2001.

[6] S. Wenger, M. Hannuksela, T. Stockhammer, “Identified H. 26L

Applications, “ITU-T SG 16, Doc. VCEG-L34, Eibsee, Germany,

Jan. 2001.

[7] Itoh, Y., Ngai-Man Cheung , “Universal variable length code for

DCT coding” IEEE 2000 International Image Processing

Conference , Volume: 1, pp. 940 -943, 2000

[8] G. J. Sullivan and T. Wiegand, ”Rate-Distortion Optimization for

Video Compression,” in IEEE Signal Processing Magazine, vol.

15, no.6, pp.74-90, Nov.1998.

[9] Wiegand, T.; Girod, B., ”Lagrange multiplier selection in hybrid

video coder control,” in IEEE Conference on Image Processing,

vol.3, pp. 42 –545, 2001

[10] W. Li and E. Salari, “Successive elimination algorithm for motion

estimation,” IEEE Trans on Image Processing, vol.4, no.1,

pp.105-107, Jan. 1995.

 102

[11] X.Q. Gao, C.J. Duanmu, and C. R. Zou, “A multilevel successive

elimination algorithm for block matching motion estimation,”

IEEE Trans. On Image Processing, vol.9, no.3, pp.501-504, Mar.

2000

[12] J. Kim and R. Park, “A fast feature-based block matching

algorithm using integral projections,” IEEE Jour. Sel. Areas in

Comm., vol.10, no.5, pp. 968-971, Jun. 1992.

[13] J. R. Jain and A. K. Jain, "Displacement measurement and its

application in interframe image coding ," IEEE Trans Commun.,

vol. COM-299, no.12, pp.1799-1808, Dec. 1981.

[14] Reoxiang Li, Bing Zeng and Liou, M.L, " A new three-step search

algorithm for block motion estimation" IEEE Transactions on

Circuits and Systems for Video Technology, Vol. 4,pp.438-442,

Aug. 1994

[15] Jianhua Lu, Liou, M.L," A simple and efficient search algorithm

for block-matching motion estimation" IEEE Transactions on

Circuits and Systems for Video Technology, Vol 7, pp.429 –433,

April 1997

[16] Lai-Man Po, Wing-Chung Ma," A novel four-step search

algorithm for fast block motion estimation" IEEE Transactions on

Circuits and Systems for Video Technology, Vol 6, pp.313 –317,

June 1996

[17] Shan Zhu、Kai-Kuang Ma,”A New Diamond Search Algorithm

for The Fast Block Matching Motion Estimation” IEEE

International Inference on Information Communications and

Signal Processing,pp.9-12 Sep 1997

[18] H. K. Chow and M. L. Liou, “Genetic motion search algorithm

for video compression ”, IEEE Trans. Circuits and System for

Video Technology,vol. 3,no. 6,1993,pp.440-445
 103

[19] Hyun Mun Kim; Acharya, T.,“ CAS: Context Adaptive Search for

motion estimation“, International Conference on Information

Technology: Coding and Computing, pp.202 -206 , 2001

[20] Lurng-Kuo Liu、Ephraim Feig,” A Block-Based Gradient Descent

Search Algorithm for Block Motion Estimation in Video Coding”

IEEE transactions on circuit and system for video

technology,VOL. 6,NO.4，AUGUST 1996

[21] Lappalainen V., Hailapuro, A., Hamalainen, T.D., “Performance

of H.26L video encoder on general-purpose processor” ,IEEE

International Conference of Consumer Electronics(ICCE),

pp.266 –267, 2001.

[22] Stephan Wenger, " H.26LComplexity Analysis according to

VCEG-L36 section 2.1.4," document VCEG-M23, ITU-T Video

Coding Experts Group (VCEG) Meeting, 2-4 April, 2001.

[23] Pankaj Topiwala, Gary Sullivan, Anthony Joch and Faouzi

Kossentini, " Performance Evaluation of H.26L, TML 8 vs.

H.263++ and MPEG-4," document VCEG-N18, ITU-T Video

Coding Experts Group (VCEG) Meeting, 20 Sep, 2001.

[24] ITU-T Recommendation H.263 software implementation, Digital

Video Coding Group at Telenor R&D, 1995

 104

	08_¤¤�^¤åºK�n.pdf
	摘要
	Abstract

	09_¥Ø¿ý.pdf
	List of Figures
	List of Tables

	10_CHAP1.pdf
	第一章 緒論
	1.1簡介
	1.2動機與目的
	1.3論文架構

	11_CHAP2.pdf
	第二章 視訊壓縮標準簡介
	2.1 資料壓縮簡介
	2.2 H.263 視訊壓縮標準
	2.2.1 影像大小格式
	2.2.2 區塊組成
	2.2.3 DCT與ZigZag
	2.2.4量化\(Quantization\)
	2.2.5半像素\(half-pixel\)
	2.2.6移動向量與參考向量
	2.2.6.1移動向量

	2.2.7 四種選擇性編碼模式
	2.2.7.1 無限制的移動向量模式\(UMV mode）

	2.2.7.2 結構式算數編碼模式\(SAC mode）
	2.2.7.3 進階預測模式（AP mode）
	2.2.7.4 PB畫面模式（PB-Frames mode）

	2.2.8 H.263 壓縮流程
	2.2.8.2 Ｐ畫面的壓縮流程
	2.2.8.3 全部壓縮流程

	2.3 H.26L 視訊壓縮標準簡介
	2.3.1 Intra/Chroma/Inter 預測模式:
	2.3.1.1 Intra prediction mode:
	2.3.1.2 Chroma prediction mode:
	2.3.2 Transform Coding
	2.3.2.14x4 Integer DCT Transform
	2.3.2.22x2 transform of chroma DC coefficients
	2.3.3 VLC：Universal VLC
	2.3.4 Motion Estimation： High /Low Complexity
	2.3.4.1 Low Complexity
	2.3.4.2 High Complexity

	22.pdf
	2.3.1 Intra/Chroma/Inter 預測模式:
	2.3.1.1 Intra prediction mode:

	29.pdf
	2.3.2 Transform Coding
	2.3.2.14x4 Integer DCT Transform
	2.3.2.22x2 transform of chroma DC coefficients
	2.3.3 VLC：Universal VLC

	12_CHap3.pdf
	第三章 快速位移估計演算法簡介
	3.1無失真快速位移估計演算法

	13_CHAP4.pdf
	第四章 快速多階連續消除移動預估演算法
	
	4.1 運用連續消除演算法及多階連續消除演算法在H.26L的分析
	4.2 H.26L的模式分析
	4.3運用既有連續消除消除演算法所算出的16x16 SAD值來降低複雜度
	4.4 精細小區塊的位移向量\(Motion Refinement\)
	4.5 中斷決策\(Half Stop Decision\)
	4.6快速多階連續消除演算法流程圖

	14_Chap5.pdf
	第五章 實驗結果與討論
	5.1環境參數與所使用的視訊樣本
	5.2運用快速多階連續消除移動預估演算法加速的效果
	Akiyo
	News
	Carphone
	Foreman
	Stefan
	�
	Bream
	�
	TML
	8.0

	5.3 Performance評估
	Akiyo
	News
	Carphone
	Foreman
	Stefan
	Bream

	15_Chap6.pdf
	第六章 結論與未來展望
	Interpolation
	Motion Search

	16_°Ñ¦Ò¤åÄm.pdf
	參考文獻

