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Abstract— Non-parallel voice conversion is a challenging task 

because the converted speech contents are not included in the 

target speaker dataset. Given the good performance of generator 

adversarial network in non-parallel voice conversion, CycleGAN-

VC is used as the baseline system here. This work proposes the 

CycleGAN-CAM architecture with additional class activation 

map (CAM) to convert spectra. The attention is achieved by 

giving more weight to features with greater differences between 

speakers so that it can focus on the regions that can distinguish 

the source and the target features. In the loss function calculation, 

we incorporated the CAM loss function so that the architecture 

can adjust the weights automatically. The experimental results 

show that we have achieved better results than the baseline system 

in Mel-cepstrum distortion (MCD) and Mean Opinion Score 

(MOS).  

Index Terms—Voice conversion, Generative Adversarial Network, 

Attention, Non-parallel data 

I. INTRODUCTION 

Voice conversion technology aims to convert the acoustic 

features of the source speaker to the acoustic features of the 

target speaker, and to preserve the language content, so that the 

converted voice sounds like the voice of the target speaker. In 

voice conversion, many neural network algorithms have very 

good performance in parallel corpus, in which the source 

speaker and the target speaker have the same sentence content, 

and can be converted according to the correspondence between 

each other after time alignment. Architectures such as GMM 

[1], DNN [2], [3], LSTM [4], ..., etc. are good for mapping the 

relationship between source and target features for voice 

conversion. However, in the parallel corpus, the alignment will 

cause distortion and greatly limit the feasibility of expanding 

the speaker group. 

In recent years, many studies gradually used non-parallel 

corpus, in which the contents of sentences between the source 

speakers and target speakers do not need to be the same, that 

can easily expand the group of speakers. However, it increases 

a lot of difficulty in conversion technology. At present, there 

exist many conversion technologies for non-parallel corpus, 

such as Variational Autoencoder (VAE) [5], [6], Generative 

Adversarial Network (GAN) [7], [8], PPG [9], ..., etc. These 

methods have exhibited good performance in non-parallel 

voice conversion. 

In view of the fact that the GAN architecture has a very good 

effect on the image style transfer technology, the CycleGAN 

architecture is adopted in this work. The CycleGAN is a 

particular configuration of GAN, it has been applied to voice 

conversion and has good results, in which CycleGAN-VC [8], 
[10] can be regarded as a representative research. In this paper, 

we use an architecture similar to CycleGAN-VC2 [10] as a 

baseline system and further improve it. 

The attention-based method is prominent in many neural 

network algorithms. In terms of image style transfer, [11], [12] 

adds attention module to the generator adversarial network and 

has a very good performance. This research refers to [12] using 

the class activation map method [13] to modify the architecture 

and loss function. The generator gives greater weights to 

feature regions that may be significantly different between 

speakers and forces the model to focus on these regions for 

transformation, thus makes the voice conversion better. 

In this paper, the architecture of CycleGAN-CAM (Class 

Activation Map) is proposed to transform the speech spectrum. 

In the loss function part, we include the CAM loss function to 

make the network weights adaptive. It is worth noting that, 

unlike many other research studies, the approach we have 

proposed does not rely on any additional training data and 

external modules. 

The main contributions of this paper include: 1) We add the 

attention-based method of class activation map to the 

generative adversarial network, and propose the CycleGAN-

CAM architecture to convert the spectrum. 2) We include a 

CAM loss function to allow the network to adjust the weights 

adaptively. 

This paper is organized as follows. In Section Ⅱ, we review 

the research of CycleGAN voice conversion. In Section Ⅲ, the 

proposed method is explained. In Section Ⅳ, experimental 

results are reported. Conclusions are drawn in Section Ⅴ. 

II. RELATED WORK 

A. CycleGAN for Voice Conversion 

Generative adversarial networks have shown very good 

performances on non-parallel data conversion in many fields 

such as computer vision and voice conversion. In this paper, 

we use an architecture similar to CycleGAN-VC2 [10] as a 

baseline system for voice conversion. 

There are two major parts in CycleGAN, the generator and 

the discriminator. The purpose of the generator is to generate 

fake samples that are close to the reality, and the purpose of the 

discriminator is to identify the authenticity of the samples. 

During training, the discriminator assists the generator by 

identifying the fake samples which are produced by the 

generator. Four architectures are used during CycleGAN 



training, two generators (𝐺𝑥→𝑦、𝐺𝑦→𝑥) and two discriminators 

(𝐷𝑥、𝐷𝑦 ). During voice conversion, the generator 𝐺𝑥→𝑦can 

map the acoustic features of the source speaker 𝑥 ∈ 𝑋 to the 

acoustic features of the target speaker 𝑦 ∈ 𝑌. The discriminator 

𝐷𝑥 is to identify the true similarity between the real sample (x) 

and the fake sample (𝐺𝑦→𝑥(𝑦)). Four loss functions are used to 

update the network in CycleGAN-VC2 [10]. 

The purpose of the adversarial loss function is to make the 

generator and the discriminator to form a state of adversarial. 

In order to make 𝐺𝑥→𝑦 better convert the acoustic features of x-

speaker into the acoustic features of y-speaker, the adversarial 

loss is defined as (1)  

 

 

 

 

 

 

where 𝐷𝑌  is the discriminator for discriminating y-speaker 

acoustic features and 𝐺𝑋→𝑌(𝑥)  is the converted y-speaker 

pseudo-acoustic feature. In this formula, the discriminator 

expects this loss function to be maximized and to achieve the 

goal of capturing a converted fake sample, while the generator 

expects this loss function to be minimized and to achieve the 

goal of deceiving the discriminator. 

Due to the use of a non-parallel corpus, the x-speaker and y-

speaker sample contents are different in the training set. 

Therefore, it is not possible to compare the fake sample 

𝐺𝑋→𝑌(𝑥) with the real sample  𝑦. The cycle-consistency loss 

function produces a fake sample of the same content by 

allowing the real sample to go through two generators, and it 

calculates the L1 distance from the real sample. The cycle-

consistency loss is defined as in (2) 

 

 

 

 

 

 

where 𝐺𝑌→𝑋(𝐺𝑋→𝑌(𝑥)) and 𝐺𝑋→𝑌(𝐺𝑌→𝑋(𝑦)) are fake samples 

that have been converted twice to the same content as the input 

sample. 

To save consistency in linguistic content, identity-mapping 

loss are used, which is defined as (3)  

 

 

 

 

 

where 𝐺𝑌→𝑋(𝑥) uses 𝐺𝑌→𝑋 to transform the real samples of x 

speakers, expecting that the fake samples of x speakers after 

conversion retain the original linguistic content, and calculate 

the L1 distance from the real samples. 

The second adversarial loss is similar to the adversarial loss. 

The difference is in the use of a discriminator for features that 

have been converted twice. It is defined as (4).  

 

 

 

 

 

 

 

In the CycleGAN-VC2 [10] architecture, the generator uses 

Gate Linear Unit (GLU) [14] as the activation function, Pixel 

Shuffler [15] for Upsample. The 2D CNN is used to extract 

feature during Upsample and Downsample. The 1D CNN is 

used to extract the time relationship during conversion. The 

architecture of PatchGAN [16] is used in the discriminator to 

differentiate acoustic features. 

III. PROPOSED METHOD 

A. CycleGAN-CAM 

This work proposes the CycleGAN-CAM architecture that is 

based on the CycleGAN-VC2 [10] architecture with additional 

class activation map for non-parallel voice conversion. The 

CycleGAN-CAM architecture is mainly used to convert 

spectrum features. It uses 36-dimensional mel-cepstrum 

(MCEPs) to represent spectrum features. During training, in 

each iteration it will randomly extract 128*36 MCEPs as the 

input. 

The proposed system is an attention-based CycleGAN. The 

attention block is shown as in Fig 1. We use the global average 

pooling to quantify the features to obtain the feature vector 

representing the feature of each channel, and use the fully 

connected layer (only weight) to multiply it by the channel 

feature weight. The output CAM loss coefficient is used to 

calculate the CAM loss function so that the network can adjust 

the weight adaptively. Finally, the feature weight vector in the 

fully connected layer is multiplied by the features, which are 

originally input to the attention block, and the weighted 

features are generated as the output. Our goal is to allow the 

architecture to weight the channel features with large 

differences between speakers and to transform the different 

feature regions that can distinguish the source speaker from the 

target speaker. 

 

 

 

The generator architecture and network parameters are 

shown as in the Fig 2, where the GLU [14] is used as the 

activation function, and the Pixel Shuffler [15] is used for the 

upsample part. We add an attention block after the downsample 

part and use the residual block to convert feature. 

 

 

𝐿𝑐𝑦𝑐(𝐺𝑋→𝑌, 𝐺𝑌→𝑋) = 

    𝐸𝑥~𝑃𝑋(𝑥) [‖𝐺𝑌→𝑋(𝐺𝑋→𝑌(𝑥)) − 𝑥‖
1
] 

    +𝐸𝑦~𝑃𝑌(𝑦) [‖𝐺𝑋→𝑌(𝐺𝑌→𝑋(𝑦)) − 𝑦‖
1
] 

𝐿𝑖𝑑(𝐺𝑋→𝑌, 𝐺𝑌→𝑋) = 𝐸𝑥~𝑃𝑋(𝑥)[‖𝐺𝑌→𝑋(𝑥) − 𝑥‖1]

+ 𝐸𝑦~𝑃𝑌(𝑦)[‖𝐺𝑋→𝑌(𝑦) − 𝑦‖1] 

𝐿𝑎𝑑𝑣2(𝐺𝑋→𝑌, 𝐺𝑌→𝑋, 𝐷𝑋) = 
    𝐸𝑥~𝑃𝑋(𝑥)[𝑙𝑜𝑔𝐷𝑋(𝑥)] 

    +𝐸𝑥~𝑃𝑋(𝑥)[𝑙𝑜𝑔 (1 − 𝐷𝑋(𝐺𝑌→𝑋(𝐺𝑋→𝑌(𝑥))))] 

(2) 

𝐿𝑎𝑑𝑣(𝐺𝑋→𝑌, 𝐷𝑌) = 

    𝐸𝑦~𝑃𝑌(𝑦)
[𝑙𝑜𝑔𝐷𝑌(𝑦)] + 

    𝐸𝑥~𝑃𝑋(𝑥)[𝑙𝑜𝑔(1 − 𝐷𝑌(𝐺𝑋→𝑌(𝑥)))] 

(3) 

(1) 

(4) 
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Fig. 1   The detailed architecture of Attention block 



 

 

 

 

 

 

 

 

 

 

 

 

 

The discriminator architecture and network parameters are 

shown as in the Fig 3. We add an attention block at the 

corresponding position of the generator. The detailed structure 

is the same as the attention block in the generator, and the CAM 

loss coefficient is also generated to calculate the loss function. 

It makes it more accurate for the discriminator to distinguish 

the authenticity of the weighted features. 

 

B. CAM Loss Function 

In order to allow the attention block in the architecture to 

adaptively adjust the weights, we use the CAM loss coefficient 

  to adjust the parameters in the network when calculating the 

loss function. It gives large weights to the feature region that 

differ significantly between speakers. This loss function is 

divided into two parts. In the generator part, take 𝐺𝑥→𝑦 as an 

example, the CAM loss function 𝐿𝑐𝑎𝑚
𝑥→𝑦

 can be defined as (5). 

 

 

 

 

 

 

When input the features of different speakers, we expect that 

the weights added in the same region will make   produce 

different extreme values. Through 𝐿𝑐𝑎𝑚
𝑥→𝑦

, we can increase the 

weights of the region features that differ greatly from source 

and target speaker. For 𝐺𝑥→𝑦 , it should be expected that the 

output value of (5) is as small as possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the discriminator part, we take 𝐷𝑦  as an example. The 

CAM loss function 𝐿𝑐𝑎𝑚

𝐷𝑦
 can be defined as (6) 

 

 

 

 

 

 

where CAM loss coefficient   can be regarded as the 

preliminary identification result after weighting the features. 

The structure of this loss function is similar to the adversarial 

loss, also input real sample y and fake sample 𝐺𝑥→𝑦(𝑥) for 

identification. In this formula, the generator expects 𝐿𝑐𝑎𝑚

𝐷𝑦
 to be 

minimized and achieves the goal of deceiving the discriminator. 

On the contrary, the discriminator expects 𝐿𝑐𝑎𝑚

𝐷𝑦
 to be 

maximized and is capable of capturing the converted fake 

samples. 

Combining the original loss function of CycleGAN-VC [10] 

and the CAM loss function proposed in this work, the overall 

loss function objective can be defined as (7) 

 

 

 

 

 

 

 

 

 

where 𝜆𝑎𝑑𝑣 , 𝜆𝑐𝑦𝑐 , 𝜆𝑖𝑑 , and 𝜆𝑐𝑎𝑚  are the weights of each loss 

function. 

After incorporating the CAM loss function, the generator 

can convert the voice better, and the relative discriminator can 

identify the real and fake samples more easily. 

 

 

 

𝐿𝑐𝑎𝑚
𝑥→𝑦

= −(𝐸𝑥~𝑃𝑋(𝑥) [𝑙𝑜𝑔 ( 𝑥→𝑦(𝑥))] 

                    +𝐸𝑦~𝑃𝑌(𝑦) [𝑙𝑜𝑔 (1 −  𝑥→𝑦(𝑦))]) 

𝐿𝑐𝑎𝑚

𝐷𝑦 = 𝐸𝑦~𝑃𝑌(𝑦) [( 𝐷𝑦
(𝑦))

2

] 

              +𝐸𝑥~𝑃𝑋(𝑥)[(1 −  𝐷𝑦
(𝐺𝑥→𝑦(𝑥)))

2] 

𝐿𝑓𝑢𝑙𝑙(𝐺𝑋→𝑌, 𝐺𝑌→𝑋, 𝐷𝑋, 𝐷𝑌) = 

          𝜆𝑎𝑑𝑣(𝐿𝑎𝑑𝑣(𝐺𝑋→𝑌, 𝐷𝑌) + 𝐿𝑎𝑑𝑣(𝐺𝑌→𝑋, 𝐷𝑋) 
         +𝐿𝑎𝑑𝑣2(𝐺𝑋→𝑌, 𝐺𝑌→𝑋, 𝐷𝑋

′ ) + 𝐿𝑎𝑑𝑣2(𝐺𝑌→𝑋, 𝐺𝑋→𝑌, 𝐷𝑌
′ )) 

         +𝜆𝑐𝑦𝑐𝐿𝑐𝑦𝑐(𝐺𝑋→𝑌, 𝐺𝑌→𝑋) 

         +𝜆𝑖𝑑𝐿𝑖𝑑(𝐺𝑋→𝑌, 𝐺𝑌→𝑋) 

         +𝜆𝑐𝑎𝑚𝐿𝑐𝑎𝑚 ( 𝑥,  𝑦,  𝐷𝑥
,  𝐷𝑦

) 

(5) 

(6) 

(7) 

Fig. 3   Network architectures of discriminator. Input is MCEPs Output 

is similarity matrix. In the architecture, K, S, F denote kernel size, stride, 

and filter number of convolution layer. 

Fig. 2   Network architecture of the generator. Input and output are MCEPs.  In the architecture, K, S, F denote kernel size, stride, and 

filter number of convolution layer. In Upsample part, SF denote scale factor of pixel shuffler. 
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C. Total Conversion Model 

The framework conversion process is shown in Fig 4, 

WORLD vocoder is used to extract Fundamental frequency 

(F0), Spectrum (SP) feature, and Aperiodic parameter (AP) 

[17]. Spectrum part uses 36-dimensional MCEPs 

representation and utilize the CycleGAN-CAM architecture 

conversion. The F0 part uses Logarithm Gaussian 

normalization transformation [18] to convert. Finally, we use 

the WORLD vocoder to reconstruct the voice waveform by 

Converted F0, Converted SP, and unconverted AP. 

 

 

 

IV. EXPERIMENT RESULT 

In this section, we describe the experiments and evaluate the 

effectiveness of our proposed voice conversion framework in 

terms of spectrum. 

We use the non-parallel corpus (spoke task) part of the 

VCC2018 dataset, which is composed of English data. We 

have selected 2 source speakers (SM1, SF1) and 2 target 

speakers (TM1, SM1) to form 4 pairs for experiments, denoted 

by SM→TM, SM→TF, SF→TF, and SF→TM, respectively. 

They are divided into Intra-gender (SF→TF, SM→TM) and 

Inter-gender(SM→TF, SF→TM) groups. Each speaker in the 

training set has 81 sentences, each sentence is about 2-7 

seconds, and the total length is about 5 minutes. No additional 

data is used for training. Each speaker in the evaluation set has 

35 sentences, and they are only used when calculating objective 

and subjective evaluation values. 

A. Experimental Setup 

For training data, we use a sampling rate of 22.05kHz, and 

use the WORLD vocoder to extract 36-dimensional mel 

cepstrum coefficients (MCEP), fundamental frequency (F0) 

and aperiodic parameter (AP) every 5ms. The conversion is 

mainly for MCEPs and F0, the AP part is directly copied 

without conversion. 

In our proposed voice conversion framework, we use 

CycleGAN-CAM to convert spectrum features. In order to 

better maintain the feature structure, the CycleGAN-CAM 

generator uses 2D CNN in upsample part and downsample part, 

1D CNN in the residual block, and the discriminator uses 2D 

CNN. In terms of loss function, we use adversarial loss, cycle-

consistency loss, identity-mapping loss, two-step adversarial 

loss, and CAM loss. We set 𝜆𝑎𝑑𝑣 = 1, 𝜆𝑐𝑦𝑐 = 10, 𝜆𝑖𝑑 =   and 

𝜆𝑐𝑎𝑚 = 10, and we only use 𝐿𝑖𝑑 for the first 104 iterations. In 

the training phase, we use the Adam optimizer with a batch size 

of 1 to train the networks. We train the networks for  ∗ 105 

iterations. We set the initial learning rate 0.0002 for the 

generator and 0.0001 for the discriminator and with momentum 

term 𝛽1 of 0.5. 

B. Evaluations 

In the evaluation phase, we use Mel-Cepstrum Distortion 

(MCD) and Mean Opinion Score (MOS) to evaluate the voice 

quality and similarity after conversion. 

MCD is a common objective evaluation value, which mainly 

evaluates the voice similarity after conversion. This evaluation 

uses 35 sentences of voice data in the evaluation set. We use 

Dynamic Time Warping (DTW) to align the converted voice 

length to the target speaker's voice length of the same content, 

and calculate MCD between each other. The results are shown 

in the Table I. We compare the baseline system (CycleGAN-

VC) and our proposal attention-based system (CycleGAN-

CAM). The table shows that CyclGAN-CAM architecture is 

more effective than the baseline system.  

TABLE I 

A COMPARISON OF THE MCD RESULTS BETWEEN BASELINE AND OUR 

PROPOSED METHOD  

MOS is a common subjective evaluation value. We 

randomly select 10 sentences of converted voice from different 

systems, and present them to the listeners in random order. We 

invite 10 listeners to listen to the converted sentences and score 

them according to the converted voice quality and naturalness 

(5: excellent, 4: good, 3: fair, 2: poor, 1: bad). The evaluation 

results are shown in the Table II. The results show that, in 

subjective hearing, the voice converted by CycleGAN-CAM is 

more clear than the baseline system. The results show that the 

CycleGAN-CAM proposed in this paper has a good 

performance compared with the baseline system. 

TABLE II 

A COMPARISON OF THE MOS RESULTS BETWEEN BASELINE AND OUR 

PROPOSED METHOD 

V. CONCLUSION 

This paper proposes a new non-parallel voice conversion 

architecture, which is trained under limited non-parallel data 

and does not use external modules. We use the CycleGAN-

CAM architecture with an attention-based method to convert 

the spectrum. The objective and subjective evaluation values 

indicate that our system has a good performance on the speaker 

similarity and voice quality. 

Fig. 4   The total conversion phase of the proposed voice conversion 
framework 
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