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Abstract—In this paper, we incorporate the attention gates 

(AG) into the convolutional recurrent neural network (CRNN) 

to perform speech enhancement. The attention gates, which 

enhance important features and suppress irrelevant parts, can 

help the system effectively generate more accurate complex 

ratio mask (CRM). Because the model takes into account the 

phase information, better speech quality can be obtained. Since 

the parameters of the proposed model can be reduced to only 

2.3M, the computational complexity is low, and the objective of 

real-time speech enhancement can be achieved. 
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I. INTRODUCTION 

In today's indoor or outdoor environment, noises exist 
everywhere, which not only degrades the speech quality but 
also affects automatic speech recognition (ASR). Therefore, 
speech enhancement is a highly desired task when taking 
noisy speech as input and generates enhanced speech output 
to obtain better speech quality and intelligibility. Due to the 
popularity of deep learning (DL) technology, speech 
enhancement benefits from deep learning, which can 
effectively deal with non-stationary noise. In this paper, we 
focus on DL-based single-channel speech enhancement to 
obtain better perceptual quality and intelligibility, especially 
for real-time processing with low model complexity. The 
proposed system utilizes the convolutional recurrent neural 
network (CRNN) [1] with additional attention gates (AG) [2] 
to enhance important time frequency bands and suppress 
irrelevant parts to achieve better speech quality. 

II. PROPOSED METHOD 

In this paper, the flow diagram of the proposed system is 
shown as in Fig. 1. The proposed system mainly includes 
three parts, the preprocessing module, the neural network, 
and the loss function. 

Fig. 1. The flow diagram of the proposed system. 

The preprocessing module mainly performs the short-
time Fourier transform (STFT). We assume the microphone 
signals to be described in the STFT domain by (1) 

𝑋[𝑘, 𝑙] = 𝑆[𝑘, 𝑙] + 𝑁[𝑘, 𝑙]               

where 𝑋[𝑘, 𝑙], 𝑆[𝑘, 𝑙], and 𝑁[𝑘, 𝑙] denote the STFT at time 
frame 𝑙  and frequency bin 𝑘  of the noisy speech, clean 
speech, and noise, respectively. In our system, STFT is 
computed based on a 25 ms Hanning window with 75% 
overlap between frames and a 512-point discrete Fourier 
transform. STFT can be further decomposed into real and 
imaginary parts (2) (3), which are used as the input features 
of the neural network: 

𝑅𝑒𝑎𝑙(𝑋) = |𝑋[𝑘, 𝑙]|𝑐𝑜𝑠(𝜑𝑋)                

𝐼𝑚𝑎𝑔(𝑋) = |𝑋[𝑘, 𝑙]|𝑠𝑖𝑛(𝜑𝑋)                                       

where |𝑋[𝑘, 𝑙]| and 𝜑𝑋 denote the magnitude and the phase 
of the noisy spectrogram, respectively. 

The neural network model of the proposed system is 
shown as in Fig. 2. It is mainly composed of four parts, the 
encoder, the enhancer, the attention gates, and the decoder. 

 

Fig. 2. The neural network model of the proposed system. 

The encoder aims at extracting high-level features from 
the input features, and reducing the resolution. The input 
features are extracted through the five convolutional layers, 
each followed by batch normalization (BN) and Prelu 
activation. In the enhancer, the two long short-term memory 
(LSTM) layers are specifically used to model the temporal 
dependencies, and the one dense layer linearly adjusts the 
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features after LSTM. The AG focuses on the important time 
frequency bands and ignores the irrelevant parts to enhance 
the target speech. In the AG, it uses each layer of the encoder 
output features and the corresponding layer of the decoder 
input features, through 1 × 1 kernels, to get attention 
coefficients, which will be multiplied with the encoder output 
features. The three 1×1 kernels in an AG have the same 
number of channels, which are set by the current number of 
channels of convolutional layers, and BN is used after each 
convolutional operation. The flow diagram of the AG is 
shown as in Fig. 3. The decoder aims at reconstructing the 
low resolution features to the original size of input, leading 
the encoder-decoder structure to a symmetric design. The 
encoder output features after AG concatenate with the 
decoder input features, and go through the deconvolutional 
layers, BN, and Prelu activation. By adding AG, the decoder 
can effectively generate more accurate CRM. 

 

Fig. 3. The flow diagram of the attention gate. 

The neural network generates the CRM as the output of 
the model. We can use the magnitude (4) and the phase (5) of 
the CRM to get the final estimated speech, represented by the 
magnitude (6) and the phase (7), 

|𝑀̃| = 𝑡𝑎𝑛ℎ (√𝑀𝑟̃
2
+𝑀𝑖̃

2
), 0 ≤ |𝑀̃| ≤ 1                

 𝑀̃ = 𝑡𝑎𝑛−1(
𝑀̃𝑖

𝑀̃𝑟
)

|𝑆̃| = |𝑋| |𝑀̃|                                 

 𝑆̃ =  𝑋+ 𝑀̃                 

where 𝑀̃ and 𝑆̃ denote the estimated mask and the estimated 
speech spectrogram, respectively. The loss function in our 
training stage is SI-SNR loss (8), which has been commonly 
used to replace the mean square error (MSE) loss [3]: 

{
 

 
𝑠𝑡𝑎𝑟𝑔𝑒𝑡 =   (< 𝑠̃, 𝑠 >⋅ 𝑠)/∥ 𝑠 ∥2

2

𝑒𝑛𝑜𝑖𝑠𝑒 =   𝑠̃ − 𝑠𝑡𝑎𝑟𝑔𝑒𝑡

𝐿𝑆𝐼−𝑆𝑁𝑅 = −10log10(
∥𝑠𝑡𝑎𝑟𝑔𝑒𝑡∥2

2

∥𝑒𝑛𝑜𝑖𝑠𝑒∥2
2 )

                (8) 

where 𝑠 and 𝑠̃ denote the clean and estimated time-domain 
waveform, respectively, <⋅,⋅>  and ∥⋅∥2

2  denote the dot 
product between two vectors and Euclidean norm (L2 norm). 

III. EXPERIMENTAL RESULTS 

In this work, the Deep Noise Suppression (DNS) 
Challenge 2020 datasets were used for our experiments. We 
set the audio length to 3 seconds, the sampling rate to 16 KHz, 
and the training and validation ratio to 95:5. For the total of 
250 hours dataset, half of which were non-reverberant and the 

other half were reverberant. For testing our model, the results 
of PESQ and STOI of the test set were compared with other 
models. 

TABLE I. PESQ and STOI on DNS challenge test set (simulated data) 

Model #Para. 

(M) 

Process 

time (s) 

No Reverb Reverb 

PESQ 

(MOS) 

STOI 

(%) 

PESQ 

(MOS) 

STOI 

(%) 

Noisy - - 2.454 91.52 2.753 86.62 

NSNet [4] 

(Official) 
5.1 - 2.873 94.47 3.076 90.43 

DCCRN [3] 

(Baseline) 
3.7 0.709 3.168 95.68 3.073 89.63 

CRN 2.2 0.322 3.165 95.63 3.084 90.14 

AGCRN 

(Proposed) 
2.3 0.418 3.213 95.86 3.147 90.37 

In TABLE I, we compared the official model and the 
baseline model. In DNS challenge 2020, DCCRN ranked first 
in the real-time speech enhancement task. The test results of 
the official model were referred to the reference [5], and the 
test results of the baseline model used the same 250 hours 
dataset for fair comparison. For the calculation of average 
processing time, we used a CPU to run the 3 seconds audio 
file. We can observe that using the previously introduced 
input features, neural networks, and the loss function, our 
proposed system has surpassed the official and the baseline 
models. Comparing with the baseline model, in terms of 
PESQ and STOI scores, PESQ improves by 0.06 MOS on 
average, while STOI improves by 0.46 % on average. In 
terms of the processing time and the amount of parameters, 
our proposed system also performs better than the baseline 
model. In addition, incorporating AG does help the neural 
network to effectively estimate the CRM and improve the 
final speech quality. 

IV. CONCLUSION 

In this work, we have proposed a system that includes a 
convolutional recurrent neural network with attention gates to 
estimate CRM. In the experimental results, our proposed 
model not only has surpassed the official and the baseline 
models on PESQ and STOI scores, but also performs better in 
processing time and the amount of parameters. By adding AG 
it does help the neural networks to effectively estimate the 
CRM. In the future work, we will try to put it in the edge 
device and to improve the performance under reverberation 
conditions. 
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