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Abstract— This work proposes a Time-Frequency Separable 

Convolutional Compression Network (TFSCCN) as a system ar-

chitecture for sound event localization and detection. It utilizes 1-

D convolution kernels of different dimensions to extract features 

of time and frequency components separately, and also reduces 

the amount of model parameters by controlling the increase or 

decrease of the number of channels in the neural network. In ad-

dition, the model combines multi-head self-attention (MHSA) to 

obtain global and local information in time series features, and 

uses dual-branch tracking technology to effectively locate and de-

tect the same or different overlapping sound events. 

Keywords— sound event localization and detection, time-

frequency separable convolutional compression network, multi-

head self-attention, dual-branch tracking. 

I. INTRODUCTION 

In the audio research field, joint sound event localiza-

tion and detection (SELD) is one of the fast growing research 

topics. By simulating the hearing ability of human ears, it 

can distinguish various sound events in the environment and 

their locations and movement trajectories. The most famous 

research SELDnet, proposed by S. Adavanne et al [1], was 

chosen as the baseline for DCASE 2019/2020 Task 3, which 

used the Convolutional Recurrent Neural Network (CRNN) 

structure for training and prediction. 

Different from the commonly used 2-D convolution, we 

use 1-D convolution to extract features of a single time or 

frequency component. It can distinguish each sound event 

class according to the different characteristics of the fre-

quency distribution of different sound events. Meanwhile, it 

can also track the spatial location and movement trajectory. 

However, in order to achieve better performance, most stud-

ies take the approach to adopting higher complexity models 

to improve performance. In this study, by controlling the tim-

ing of the increase and decrease of the number of channels, 

the number of parameters is effectively reduced significantly 

while maintaining better performance. In addition, to detect 

overlapping sound events of the same or different event clas-

ses, a dual-branch tracking method is used to track individual 

sound events. 

II. METHODOLOGY 

A. Features 

The features that are sent to the proposed system can be 

obtained from the four-channel First-order of Ambisonics 

(FOA) audio. It can be converted into a time-frequency do-

main representation through STFT operations with 𝐾-point 

DFT and a K-point Hamming window. The dimensions of 

the magnitude and the phase spectrums are 𝑇 × (𝐾/2 +
1) × 4, where 𝑇 is the time frame of the output feature. 

In addition, since the sound intensity vector (IV) is a 

vector with magnitude and direction, it can be used as a fea-

ture of sound event localization, as shown in (1),  

𝐼(𝑓, 𝑡) = ℜ{ 𝑊∗(𝑓, 𝑡) [

𝑋(𝑓, 𝑡)

𝑌(𝑓, 𝑡)

𝑍(𝑓, 𝑡)
]  } (1) 

where 𝑊, 𝑋, 𝑌, 𝑍 are the representations of the time do-

main signals of the four channels after STFT, ℜ{∙} indicates 

the real part, and ∗ denotes the conjugate. The output di-

mension is 𝑇 × (𝐾/2 + 1) × 3 . Finally, the three features 

are normalized using 𝑀 mel-band filter banks, converted to 

log-mel spectrum by taking the logarithm, and stacked as the 

input features of the model. The overall dimensions are 

𝑇 ×𝑀 × 11. 

B. Network architecture 

 

Fig. 1. System architecture diagram 

As shown in the network architecture of Fig 1, a Time-

Frequency Separable Convolutional Compression Network 

(TFSCCN) is constructed for feature extraction. TFSCCN 

adopts the design concept of SqueezeNet to construct a con-

volutional network with the same number of module layers 

as SqueezeNet, and adds a skip connection method to com-

bine the input and output results of each module when trans-

ferring, as shown in Fig 2. 

 

Fig. 2. The block diagram of TFSCCN 

The TFSC module is composed of 1-D convolutions of 

different sizes, as shown in Fig 3, which uses the following 

design concepts: 

(1) After the feature map passes through the TFSC mod-

ule, the size (𝑡𝑖𝑚𝑒, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) of the feature map 

remains unchanged, only the number of output chan-

nels (𝑐ℎ𝑎𝑛𝑛𝑒𝑙) is changed. 

(2) Reduce the input channel to 1/16  times the output 

channel through 1 × 1 convolution. 

(3) Through different sizes of 1-D convolutions along the 

frequency and time axes to extract the features of the 
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frequency and time components, and increase the 

number of channels of the feature map. 

 

Fig. 3. TFSC module 

After the TFSCCN, the final output is fed to the two 

branches of localization and detection. Each branch is di-

vided into two tracks. Each track is used to identify a single 

sound event, and the time series features are further pro-

cessed through the multi-head self-attention (MHSA) mech-

anism to obtain the relevance of each timestep. 

C. Dual-branch tracking 

Dual-branch tracking adopts the concept of track-wise 

proposed by Y. Cao et al [2]. The sound event localization 

and detection operations use mean squared error (MSE) and 

binary cross entropy (BCE) as the loss functions, respec-

tively. Both the localization and detection branches calculate 

the loss of the two tracks and average them to obtain the av-

erage loss of each branch (𝐿𝐷𝑂𝐴 , 𝐿𝑆𝐸𝐷). After the two sets of 

loss (𝐿1
𝐷𝑂𝐴 , 𝐿1

𝑆𝐸𝐷  )  and (𝐿2
𝐷𝑂𝐴 , 𝐿2

𝑆𝐸𝐷  )  are calculated, the 

permutation invariant training (PIT) method is used to select 

the combination with the smallest loss to determine the final 

sorting for backpropagation. 

𝐿𝑜  1 = 𝐿1
𝐷𝑂𝐴 + 𝐿1

𝑆𝐸𝐷 𝐿𝑜  2 = 𝐿2
𝐷𝑂𝐴 + 𝐿2

𝑆𝐸𝐷 (2) 

As shown in (2), when 𝐿𝑜  1 ≤ 𝐿𝑜  2 , it takes 

(𝐿1
𝐷𝑂𝐴, 𝐿1

𝑆𝐸𝐷  ) as the loss for back propagation, that is, uses 

the original track sorting. Conversely, when 𝐿𝑜  1 > 𝐿𝑜  2, 

the set of loss (𝐿2
𝐷𝑂𝐴 , 𝐿2

𝑆𝐸𝐷  ) is used, that is, it flips the orig-

inal track. 

III. EXPERIMENT 

A. Dataset and experiment setup 

We use TAU Spatial Sound Events 2020 Dataset-FOA 

for experiments. Each audio file is a 60-second 4-channel 

FOA audio format, and contains 14 types of sound events.  

The dataset contains a development dataset with 600 audio 

files and an evaluation dataset with 200 audio files. The sam-

pling rate of each audio file is 24kHz, and at most two over-

lapping sound events can occur at the same time. 

In the pre-processing of features, every 2 seconds is 

used as a time frame. In addition, 1024-point DFT and a 

1024-length Hamming window are used for STFT, and 256 

mel-band filter banks are used to convert to log-mel spec-

trum. In the prediction stage, we set the threshold of SED to 

0.5 to determine whether the sound event class is active. 

B. Experimental results 

The experimental result uses the evaluation metrics 

proposed by DCASE 2020 Task 3 to conduct joint evaluation 

of sound event localization and detection [3], including eval-

uation of Error rate (ER), F-score (F), Localization error (LE) 

and Localization recall (LR). Table 1 compares the complex-

ity and performance differences between TFSCCN and var-

ious neural networks, including the baseline of DCASE 2020 

Task 3 (SELDnet) and several lightweight models, such as 

depthwise separable convolution neural network (DSCNet), 

ResNet, and SqueezeNet. 

From the results, TFSCCN achieves the best overall 

performance with the least amount of model parameters 

compared with other lightweight models.  

Table 1. Use the evaluation dataset to compare the performance of 

different CNNs 

Network  

architecture 

Detection Localization 
Total  

Param 
ER(20°) F(20°) LE(°) LR 

Baseline 0.75 32.5% 26.7 57.4% 513k 

DSCNet 0.54 56.5% 15.2 67.4% 17M 

ResNet 0.47 62.8% 12.1 70.2% 17.7M 

SqueezeNet 0.405 68.8% 10.5 74.4% 14.2M 

TFSCCN 0.385 69.5% 12.7 79.4% 11.5M 

C. Visualization of results 

 

Fig. 4. Sound event localization and detection result 

Figure 4 shows the ground truth and prediction results 

of the sound event class, azimuth, and elevation. Different 

colors indicate different types of sound events, and show the 

length of time they appear and the corresponding spatial lo-

cation and movement trajectory. From the results, it is clear 

that it can accurately predict the sound events that occur at 

different times no matter it is a stationary or moving sound 

source. In addition, it can also accurately locate its corre-

sponding angle information. 

IV.  CONCLUSION 

We have proposed TFSCCN system that uses 1-D con-

volutions of different dimensions to extract features of time 

and frequency components can greatly reduce the amount of 

model parameters. The experimental results exhibit that it 

can effectively improve the sound event localization and de-

tection performance. Compared with other CNN models, it 

has the fewest parameters and the best performance in our 

experiments.  

V. REFERENCES 

[1] S. Adavanne, A. Politis, J. Nikunen, and T. Virtanen, “Sound event lo-

calization and detection of overlapping sources using convolutional re-
current neural networks,” IEEE Journal of Selected Topics in Signal 

Processing, 13(1):34–48, March 2018. 

[2] Y. Cao, T. Iqbal, Q. Kong, Y. Zhong, W. Wang, and M. D. Plumbley, 
“Event-Independent Network for Polyphonic Sound Event Localiza-

tion and Detection,” DCASE 2020 Workshop, November 2020. 

[3] A. Mesaros, S. Adavanne, A. Politis, T. Heittola, and T. Virtanen, “Joint 
measurement of localization and detection of sound events,” In IEEE 

Workshop on Applications of Signal Processing to Audio and Acoustics 

(WASPAA). New Paltz, NY, Oct 2019. 

3
x
1

5
x
1

1
x
1

1x3

1x5BN ReLU

M
e
rg

e

(C, F, T)

C: Channel

F: Frequency

T: Time frame

BN ReLU

BN ReLU BN ReLU

BN ReLU

7
x
1

1x7BN ReLU
BN ReLU

1
x
1

T

F

C
M

T

F

frequency features time frame features

(M/16, F, T)

(M/4, F, T)

(M/4, F, T)

(M/4, F, T)

(M, F, T)

M = 2C


