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Abstract 
To improve the workout efficiency and to provide the body 

movement suggestions to users in a ``smart gym’’ environment, we 

propose to use a depth camera for capturing a user’s body parts and 

mount multiple inertial sensors on the body parts of a user to 

generate deadlift behavior models generated by a recurrent neural 

network structure. The contribution of this paper is trifold: 1) The 

multimodal sensing signals obtained from multiple devices are fused 

for generating the deadlift behavior classifiers, 2) the recurrent 

neural network structure can analyze the information from the 

synchronized skeletal and inertial sensing data, and 3) a Vaplab 

dataset is generated for evaluating the deadlift behaviors 

recognizing capability in the proposed method. 

I. Introduction 

Recognizing workout behaviors is important for users in a 
gym environment. Recognizing valid movement behavior can 
help users effectively have a workout, weight training, and get 
in good shape. On the other hand, with the recognized workout 
behaviors, the following behavior suggestion from a system is 
more and more popular. To name a few, many fitness apps are 
designed for autonomous training, recording diet, and 
suggesting a fixed training menu. The apps are often 
connected with smartwatch, smart belt, and other wearable 
smart devices. For example, FITVISOR [1] automatic assist 
system is developed by RONFIG and installed in a Sydney 
``smart gym’’ for providing suggestions to the gym users. 

Deadlift is one of the most representative workout 
behaviors for weight training. Therefore, in this paper, we 
focus on recognizing deadlift behaviors. It is a challenging 
task for recognizing deadlift behaviors from a camera-based 
approach, due to the possible severe self-occlusion situations. 
On the other hand, the sensing signal amplitude changing 
measured from wearable inertial sensors can identify possible 
moving time instant and period, but global moving directional 
information cannot be revealed. Therefore, in this paper, we 
propose to adopt a Kinect depth camera [2] for obtaining the 
skeletal information of a user, and mount multiple X-OSC [3] 
inertial sensors on the body parts of a user for obtaining the 
inertial sensing data for deadlift recognition. In addition, a 
recurrent neural network structure is used for training the 
behavior classifiers from multi-modal sensors. Specifically, a 
deep learning process is adopted for generating the deadlift 
behavior models. 

Once the deadlift behaviors can be recognized, the 
obtained sensing data are evaluated by the proposed system. 
The scores and the suggestions are displayed to the users to 
improve the workout behavior in the following possible 
movements. To validate the proposed prototyping system, we 

generate a Vaplab dataset by recording the sensing data from 
multiple devices for a group of gym users. The experimental 
results demonstrated that the proposed system can effectively 
recognize deadlift behaviors. 

II. Proposed method 

The system block diagram of the proposed deadlift 
recognition system is shown in Fig. 1. The depth data and the 
inertial sensor signals are captured and recorded on the left 
part of Fig. 1. The skeleton features and the IMU features are 
extracted from the depth camera modality and the inertial 
sensor modality, correspondingly. After the pre-processing 
form the raw data of multiple modalities, the feature vectors 
of different modalities are synchronized in time and combined 
as a vector in each time frame. Based on the obtained feature 
vectors, at the bottom of the right side of Fig. 1, a long short-
term memory (LSTM) recurrent neural network (RNN) 
architecture is applied to generate the deadlift behavior 
classifiers. Moreover, the recognized behavior results with the 
feature vectors are further analyzed for movement evaluation. 
The proposed will feedback a user for the score assessment 
result and provide the movement suggestion texts to a user. 
The details of the block diagram of Fig. 1 are described in the 
following subsections. 

 

Fig. 1. The block diagram of the proposed deadlift recognition system. 

A. Feature extraction from a depth camera and 
multiple inertial sensors 

Because the sampling rate from multiple sensing devices 
might be different, to temporally synchronize the signals 
obtained from multimodal devices, a resample process for all 
of the data obtained from all the devices is necessary. A 
difference operation from the current time instant to the 
previous ones of the centroid position, gyro sensing signal, 
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and accelerometer signal are calculated as the equations (1), 
(2) and (3): 

   (1) 

  (2) 

 (3) 

According to the criteria defined in [4], the maximum relative 
difference of 5% in equations (1), (2) and (3) are used as the 
threshold for signal temporal segmentation. 

For each temporal segment, all the sensing signals are 
empirically resampled to 120 sampling points in this paper. 
For the depth camera modality, the obtained frames are 
resampled to 120 frames for each temporal segment. In 
addition, we adopt a time-variant skeleton vector projection 
method [5] (our previous work) to extract the feature in a 
frame. According to the obtained 25 skeleton joints (from 
Kinect v2 official sdk), the shoulder vector S and the foot 
vector F can be obtained. According to a cross-product from 
the vector S and vector F, a normal vector N (the yellow arrow) 
can be obtained, with a mutually orthogonal property. Once a 
joint is obtained, e.g. jt

hr in Fig. 3, its projective vectors to the 
bases N, F, and S, can be obtained, generating the feature 
vectors. Therefore, in each temporal segment, for the depth 
camera modality, the amount of skeleton feature data is 120 
(frame number) * 25 (number of nodes) * 3 (base vector), a 
total of 9,000 values of data. 

 

Fig. 2. Skeleton base vector diagram [5].   Fig. 3. Projection volume [5]. 

For the inertial sensor modality, the obtained data is 
resampled to 120 sampling points. As shown in Fig. 4, each 
resampled temporal segment is divided into six intervals (each 
section with the length 20). For one of the six intervals, the 
average value μ, the standard deviation σ, and the variation 
number σ^2 in x-, y-, and z- directions are obtained as the 
features [6]. Therefore, in each temporal segment, for the 
inertial sensor modality, the amount of the inertial sensor 
feature data is 4 (number of devices) * 2 (accelerometer sensor 
and gyro sensor) * 9 (features numbers) * 6 (interval numbers), 
a total of 432 values of data. 

 

Fig. 4. Features in a temporal segment of the inertial sensor modality.  

B. Deadlift classifier training from a recurrent 
neural network structure 

Once the features from the depth camera modality and the 
inertial sensor modality are obtained, as shown in the right 
bottom part of Fig. 1, an LSTM recurrent neural network 
architecture is adopted for training the deadlift classifiers. 
Before sending into the LSTM, the obtained features are 
concatenated and flattened as a one-dimensional vector as 
shown in Fig. 5. To keep the temporal synchronized manner, 
the features in the depth camera is also divided into six equal 
partitions. Finally, the obtained concatenated feature vector is 
as shown in Fig. 5. 

Improved from the conventional RNN, in this paper, we 
applied LSTM [7] to observe the received information with 
long-term memory for the sequential data from the depth 
camera modality and the inertial sensor modality, with the 
LSTM parameter setting in [8]. The hidden layer size is 
related to the complexity of the observed data, according to 
the empirical tests for the layer size of one, two, and three, the 
hidden layer size is determined to two (LSTM_1 and 
LSTM_2), as shown in Fig. 6, which is the training process 
for obtaining the LSTM-based classifiers. 

 

Fig. 5. The complete features from multiple modalities. 

 

 

Fig. 6. The training process of the proposed LSTM-based scheme. 
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III. Experimental Results  

In this paper, a deadlift behavior dataset is generated and 
used to evaluate the performance of the proposed method. In 
addition, the textual feedback from the proposed system (the 
upper-right part of Fig. 1) will be discussed. 

A. Deadlift behavior dataset 

In this paper, we generate a dataset for obtaining deadlift 
behaviors, called `` VAPLAB Multi-Modality Fitness 
Behavior Dataset’’. As shown in Fig. 7, a Kinect depth camera 
is installed in front of the user about 2.1 meters. 4 x-OSC 
inertial sensors are worn on the wrists and ankles on both 
hands of the user. In the dataset, 6 behaviors are operated by 
the professional workout users in a gym, including: 
Conventional Dead Lift (CDL), Sumo Deadlift (SDL), 
Romanian Deadlift (RDL), Stiff-legged Deadlift (SLDL), 
Block pull Deadlift (BPDL), Deficit Deadlift (DDL). The 
snapshots of the representative deadlift behaviors in the color 
frames are shown in Fig. 8. Furthermore, in `` VAPLAB 
Multi-Modality Fitness Behavior Dataset’’, the inertial data, 
depth frames, color frames, and skeleton joints are recorded, 
as shown in Fig. 9. 

 

 

Fig. 7. The snapshot of recording the deadlift behavior of a user. 

 

 

Fig. 8. Representative deadlift behaviors in the dataset. 

 

 

Fig. 9. Representative deadlift behaviors in the dataset. 

 

B. Deadlift recognition results 

In the experimental results, an Intel Core i7 CPU, 8GB 
ram computer is used. We used python 3.6 with tensor flow 
[9] and Keras [10] to implement the RNN algorithm. There 
were 6 professional workout users invited to operate the CDL, 
SDL, RDL, SLDL, BPDL, and DDL behaviors. In the 
experimental results, we adopt a leave one out cross-
validation to train the RNN models. For each behavior, a user-
operated the same behaviors for 10 times. In the RNN training 
process, we implemented 500 epochs, and the recognition 
accuracy of the confusion matrix is shown in Table 1, with the 
average accuracy 79.99%, average training time 531.9 
seconds for training one behavior model. 

In the confusion matrix shown Table I, the accuracy of 
CDL is only 60%. In this case, 20% DDL samples are wrongly 
predicted as CDL. In addition, 14.44% SLDL are also 
wrongly predicted as CDL. The representative sample color 
frames and depth frames of CDL, SLDL, and DDL are shown 
in the first row and the second row of Fig. 10. The depth 
frames captured from the depth camera are similar for the 
CDL, SLDL, and DDL. From the depth camera modality, it 
has chances to wrongly recognize the behaviors to the others, 
as shown by the last row (yellow rectangular area) of Fig. 10. 

On the other hand, for the inertial sensor modality, the 
IMU features (the third row of Fig. 10) have different signal 
properties, as shown by the green rectangular areas and red 
rectangular areas in Fig. 10. Therefore, by combining the 
inertial sensor modality into the feature vectors, we still have 
the chances to correctly recognize the CDL behavior with the 
average accuracy 60%.   
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TABLE I.  ACCURACY OF EACH ACTION 

 

 

Fig. 10. CDL, SLDL, DDL comparison diagram 

C. Behavior evaluation from the system 

On a deadlift behavior can be roughly divided into five 
phases, as shown in Table II. For example, in the beginning, 
the CDL behavior is with the ``Starting tension’’ phase (Phase 
1 in Table II), and an example is shown by Fig. 11. The red 
oval area marked in Fig. 11 depicts two peak values (measured 
from the sensor modality) occur when the user was trying to 
use his muscle to move the object. Next, in CDL behavior, a 
``Humpback’’ phase (phase 2 in Table II) should be operated 
by the user, and an example is shown by Fig. 12. The red line 
segments depicted in Fig. 12 demonstrated a good 
``Humpback’’ pose in the most left part of Fig. 12. The joints 
of spine_shoulder, spine_mid, and spine_base should be in the 
common line segment, and it can be revealed from a camera 
modality.  

TABLE II.  JUDGMENT CRITERIA FOR EACH ACTION 

 

 

 

         Fig. 11. Starting tension 

 

 

         Fig. 12. Humpback 

 Based on the sensor modality and the camera modality, in 
the proposed system, a deadlift behavior operated by a user is 
evaluated and scored by the criteria of the competition rules 
defined by International Powerlifting Federation (IPF) [11]. 
The reasons to be judged as a fail case [11] are: “1) Any 
downward movement of the bar before it reaches the final 
position. 2) Failure to stand erect with the shoulders back. 3) 
Failure to lock the knees straight at the completion of the lift.” 
In our system, the deadlift behaviors are scored by the 
definitions in [11]. For example, in Table III, the users of case 
1 and case 2 can obtain the corresponding scores and textual 
suggestions in the prototype of the proposed smart gym 
system. 

 

TABLE III.  EACH JUDGING STANDARD CALCULATES THE SCORE 

PROPORTIONALLY 
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IV. Conclusion 

In this paper, we proposed a prototyping smart gym 
system. A depth camera and four inertial sensors are used to 
capture the body movements and measure the joint changing 
movements, correspondingly. According to the information 
obtained from the camera modality and the sensor modality, 
the deadlift behavior models are generated by a recurrent 
neural network structure. There are three contributions in this 
paper: 1) we fused multimodal sensing signals to obtain the 
deadlift behavior classifiers, 2) the temporal synchronized 
skeletal and inertial sensing data are used to train deadlift 
models, and 3) we proposed a Vaplab deadlift dataset to be 
used for evaluation.  

However, the proposed deadlift behavior recognition 
system is still in the begging phase for developing a complete 
system. In many workout applications, the feelings from the 
muscles are more important than the appearance of a pose. In 
the future, muscle sensors, e.g., MYO, can be applied for 
further study and research. 

References 
[1] [Online]. Available: https://www.ronfic.com/ 

[2] [Online]. Available: https://www.xbox.com/xbox-one/kinect 

[3] [Online]. Available: http://x-io.co.uk/x-osc/ 

[4] G. Zhu, L. Zhang, P. Shen, and J. Song, “An online continuous 

human action recognition algorithm based on the Kinect sensor”, 

Sensors, vol. 16, no. 2, pp. 161, 2016. 

[5] C. H. Kuo, P. C. Chang, and S. W. Sun, "Behavior Recognition Using 

Multiple Depth Cameras Based on a Time-Variant Skeleton Vector 

Projection," in IEEE Transactions on Emerging Topics in 

Computational Intelligence, vol. 1, no. 4, pp. 294-304, Aug. 2017. 

[6] ] S.W. Sun, T.C. Mou, C.C. Fang, P.C. Chang, K.L. Hua, and H.C. 

Shih, “Baseball Player Behavior Classification System Using Long 

Short-Term Memory with Multimodal Features,” Sensors SCI 

journal, pp.1425, 2019. 

[7] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural 

computation, 9(8):1735–1780, 1997 

[8] Chih-Chieh Fang, Ting-Chen Mou, Shih-Wei Sun, Pao-Chi Chang, 

“Maching-Learning Based Fitness Behavior Recognition from 

Camera and Sensor Modalities,” in IEEE International Conference on 

Artificial Intelligence and Virtual Reality(AIVR),17 January 2019. 

[9] [Online]. Available: https://www.tensorflow.org/  

[10]  [Online]. Available: https://keras.io/  

[11] [Online].Available: 

https://www.powerlifting.sport/rulescodesinfo/technical-rules.html 

IS&T International Symposium on Electronic Imaging 2020
3D Measurement and Data Processing 002-5



• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging 
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . .  Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org


