
VIDEO CAPTIONING BASED ON JOINT IMAGE–AUDIO DEEP LEARNING TECHNIQUES 
 

Chien-Yao Wang1, Pei-Sin Liaw2, Kai-Wen Liang2, Jai-Ching Wang3, Pao-Chi Chang2,3 
1Institute of Information Science, Academia Sinica, Taiwan 

2 Department of Communication Engineering, National Central University, Taoyuan, Taiwan 
3 Department of Computer Science and Information Engineering, National Central University, Taiwan 

 
 

Abstract—With the advancement in technology, deep 
learning has been widely used for various multimedia 
applications. Herein, we utilized this technology to video 
captioning. The proposed system uses different neural 
networks to extract features from image, audio, and semantic 
signals. Image and audio features are concatenated before 
being fed into a long short-term memory (LSTM) for 
initialization. The joint audio-image features help the entire 
semantics to form a network with better performance. 

A bilingual evaluation understudy algorithm (BLEU)—an 
automatic speech scoring mechanism—was used to score 
sentences. We considered the length of the word group (one 
word to four words); with the increase of all BLEU scores by 
more than 1%, the CIDEr-D score increased by 2.27%, and 
the METEOR and ROUGE-L scores increased by 0.2% and 
0.7%, respectively. The improvement is highly significant. 

 
Index Terms—Video captioning, sound event detection, 

acoustic scene classification, convolutional neural networks, 
long short-term memory, word embedding 
 

I. INTRODUCTION 
 

The image recognition technology involving deep 
learning has advanced, and video captioning technology has 
progressed. Videos now carry a description so that users can 
search and find videos on the basis of not only the title but 
also the video content. A video is a series of frames 
displayed one after another. Compared with an image, a 
video contains more contents with actions and movements. 
To convert the audio in a video to textual information, it is 
crucial that a network should learn the basic rules of the 
language.  

Video captioning is a challenging research topic. There 
already exist a few research literatures utilizing video and 
audio signals to obtain the best results [1-4]. This work 
proposes an integrated video-audio captioning system. 
Feature normalization is utilized to achieve the balance of the 
input image and audio features. The importance of 
normalization must not be underestimated. The experimental 
results can confirm it.  

To analyze the audio information in videos, in 2014, 
Venugopalan et al. proposed a device combining 
convolutional neural networks (CNN) and recurrent neural 

networks [5]. In this work, feature extraction is performed 
on every frame in a video by using a CNN. Then, the 
recurrent neural network processes the sequential data of a 
video and converts it into text format.  

In Section Ⅱ, we present an integrated video–audio 
description technology that uses different CNN 
architectures to extract sound event detection features, 
acoustic scene classification features, and two-dimensional 
(2D) and three-dimensional (3D) features of an image; little 
data increment is required to obtain high quality video 
captions while using this approach. We experimentally 
demonstrate that our system outperforms the currently used 
systems. Section Ⅲ provides the details of the results 
obtained using the Youtube2Text dataset. Finally, Section 
Ⅳ presents the conclusions. 
 

II. PROPOSED SYSTEM 
 

The proposed system consisting of three parts is shown 
as Fig. 1. The image, audio, and semantic descriptions are 
first processed in the preprocessing steps, and then the 
feature extraction process is performed using different CNN 
architectures. The extracted features are finally fed into the 
proposed semantic compositional network (SCN) 
architecture to generate the output for testing and evaluation. 

 

 
Fig. 1. Flowchart of the proposed video-captioning system 
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A. Data Preprocessing 

For image description, only two frames per second are 
used as inputs to the system in order to reduce the amount of 
similar frames entering the system. This downsampling step 
considerably reduces data redundancy. 

For audio description, we use the audio preprocessing 
method reported by Wu et al. [6]; this approach uses 
conventional audio signal processing methods. Original data 
is processed using short-time Fourier transform (STFT) and a 
Mel filter bank. The Hamming window length in the STFT is 
40 ms per frame, and the moving distance is the length of the 
Hamming window. A log-mel spectrogram of size 40 mel × 
the number of frames is obtained finally. 

For caption description, a large number of English 
sentences are acquired from a database. All words appearing 
in the sentences are encoded and stored in a “dictionary.” 
Then, the words are converted to numbers by using this 
dictionary. The database used contains 12,594 different 
words. 

 

B.  Feature Extraction 

Before sending a video into SCN, features are extracted 
from the preprocessed image, audio, and caption contents of 
the video separately. 

1) Image feature extraction 

We use the ResNet-152 [7] and C3D [8] networks to 
extract 2D features from the images and 3D motion 
features from the frames in the video. The ResNet-152 
network uses ImageNet [9] to form the pre-trained 
network. The images acquired from the Youtube2Text 
dataset with preprocessing were rescaled to a size of 224 
× 224 × 3. Then, these images were input into the pre-
trained ResNet-152 network. The output of the fifth layer 
of the convolutional neural network is considered the 2D 
features of the video, and the feature size is 2048. 

The C3D network uses the Sports-1M video dataset 
[10] for pretraining; then, the Youtube2Text dataset is 
preprocessed to adjust the image size to 112 × 112 × 3. 
The length of the video was 16 frames, and eight 
overlapping frames were input in the C3D network. The 
output of fc7 is considered the 3D features of the video. 
The feature size of a frame is 512. 

The experimental results in [11] evidence that 
averaging features of all frames of a video yields better 
results than using the features obtained from each frame 
separately. Thus, our approach averages the features from 
the ResNet-152 network (2048 × the number of frames) 
and the features from the C3D network (512 × the number 
of frames) separately to obtained the final 2D-CNN 
features of size 2048 and 3D-CNN features of size 512. 

 
 

2) Audio feature extraction 

The system performs sound feature extraction by 
using sound event detection (SED), which detects single 
or multiple sound events, and acoustic scene classification 
(ASC), which classifies the acoustic sound environment, 
to the preprocessed audio data, that is, a log-mel scale 
spectrum of size 40 mel × the number of frames. 

For SED, the videos in the Youtube2Text database 
are marked and divided into eight categories. The training 
and verification datasets are further obtained by dividing 
those videos into two groups. Mini-batch is set to be 200, 
the learning rate is 0.00001, and the number of iterations 
is set to 1100 in the training process. Subsequently, we 
input all the video and audio content from the 
Youtube2Text database into the trained network and 
extracted the eight-dimensional sound event features that 
passed through max pooling. 

For ASC, we used the TUT Acoustic Scenes 2016 
[12] database provided by the 2016 Detection and 
Classification of Acoustic Scenes and Events for 
pretraining. For training, the Mini-batch is set to 256, the 
learning rate is 0.001, and the number of iterations is set 
to 200. Finally, the acoustic scenes are input into the 
Youtube2Text database to extract the 15-dimensional 
sound scene features that passed through max pooling. 

We use the method presented in [6] to split the sound 
spectrum of the same film into several spectrograms of 
size 40 × 25. Moreover, the two-layer asymmetric kernel 
convolutional neural network is utilized to train the 
convolution kernel of a size of 5 × 7. The output of the 
last layer is used as a feature. Finally, the output 
characteristics of each spectrogram are averaged to obtain 
the audio feature representing the video 

3) Semantic feature extraction 

For semantic feature extraction, we used One-Hot 
Encode to process the encoded single word from the 
previous statistics. Then, the most commonly used 300 
words, including commonly used nouns, verbs, and 
adjectives, in the training dataset are used to create the 
labels. Considering the entire problem as a multilabel 
classification problem, a support vector machine (SVM) 
and a sigmoid function was used to map 12594-
dimensional text features into a 300-dimensional space. 

 

C. SCN 

The proposed architecture of the SCN, by referring to 
[13], is presented in Fig. 2. Initially, a concatenation of the 
previously obtained sound and image features is used for 
initializing the LSTM network. 

After the weight matrix is generated using the SVM, the 
first output for a sentence is obtained from the SCN. The first 
output and the weight matrix are combined as the input for 
the next sentence.  
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Fig. 2. SCN architecture combining image audio features: a is an audio 
feature, i is an image feature, and s is a semantic weight matrix  

The Mini-batch is set to be 64, learning rate is 0.0002, 
number of maximum iterations is 20, the word embedding 
dimension is 300, dropout is 0.5, and the size of the LSTM 
hidden layers was 512. The algorithm Adam [14] is used to 
replace the traditional gradient descent algorithm for 
updating the weights. 

 
III. EXPERIMENTAL RESULTS 

A. Dataset 

The video description database used is Youtube2Text 
dataset (or MSVD dataset) [15] created by Microsoft 
Research in 2010. This database contains 1970 YouTube 
videos. The length of each video is between 10 and 25 
seconds. Youtube2Text dataset have provided a video 
description, and each video contains approximately 40 
sentences in English. 

However, some videos could not be downloaded due to 
regional problems or because they were removed from 
YouTube website. Finally, 1659 videos were obtained. From 
the 1659 videos, we removed 305 videos whose sounds were 
not related to the content of the video. Thus, 1354 videos 
were obtained; the videos were divided to training (835 
clips), verification (69 clips), and testing  (450 clips) sets. 

B. Evaluation 

For evaluating the accuracy of the text description, the 
result can be scored according to the fluency of the sentence 
and the relevance of the target sentence by manual 
judgement. However, the standards of subjective evaluation 
are hard to be consistent. A set of criteria were developed for 
evaluating the text descriptions. The algorithms mostly used 
for the evaluation are bilingual evaluation understudy BLEU 
[16], METEOR [17], ROUGE-L [18], and CIDEr-D [19]. 

 

C. SCN-LSTM Experiments 

After feature extraction, we combined the 15-
dimensional sound scene features and 8-dimensional sound 
event features to obtain a 23-dimensional sound feature. 
Moreover, image features were added for training. The 
experimental results on testing sets are presented in Table I. 

By conducting experiments, the results reveal that the 
output of the semantic descriptions with considering the 
scenes and sound events at the same time accompanied by 
normalizing the sound features are all scored better than the 
semantic descriptions trained using only image features. 

When the audio features were normalized to the [−1, 1] 
interval, all scores increased by at least 1% for the word 
length from one to four words in the BLEU score, and the 
CIDEr-D score was as high as 2.27%. The METEOR and 
ROUGE-L scores also increased by approximately 0.2% and 
0.7%, respectively. 

We added different sound scenes and sound events 
features by using different normalized network. As presented 
in Table II, when the audio uses the same normalization, 
almost all indicators consider both sound scenes and sound 
events. Simultaneously, the semantic output of the network 
output was higher than other scores. Moreover, when the 
sound features were differently normalized, the highest 
scores were mostly concentrated in the normalization interval 
of [−1, 1]. The output is presented in Fig. 3. 

TABLE I. EXPERIMENTAL RESULTS OF VIDEOS WITH ADDED ACOUSTIC SCENE AND SOUND EVENT FEATURES WITH DIFFERENT NORMALIZATION METHODS

Metrics B_1 B_2 B_3 B_4 Meteor Rouge-L Cider-D

Image only (Base) 0.8224 0.7154 0.6260 0.5310 0.3490 0.7148 0.8160 

Image+audio 0.8278 0.7227 0.6316 0.5365 0.3425 0.7144 0.7962 

Improvement 0.54% 0.73% 0.56% 0.55% -0.65% -0.04% -1.98%

Image+audio normalization [-1~1] 0.8334 0.7282 0.6401 0.5475 0.3513 0.7221 0.8387 

Improvement 1.10% 1.29% 1.41% 1.66% 0.23% 0.73% 2.27% 

Image+audio normalization [0~1] 0.8283 0.7244 0.6352 0.5398 0.3518 0.7218 0.8175 

Improvement 0.59% 0.90% 0.92% 0.88% 0.27% 0.70% 0.15% 
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Ground truth: 
a man is playing with his dog 
Image only: 
a man is playing with a toy 

Image+audio: 
a monkey is playing 
Image+audio [-1~1]: 
a man is playing with a dog
Image+audio [0~1]: 
a man is playing with a dog

Ground truth: 
the man is playing basketball 
Image only: 
a boy is playing 

Image+audio: 
a boy is playing basketball 
Image+audio [-1~1]: 
a man is playing a basketball
Image+audio [0~1]: 
a boy is playing football 

Fig. 3. Video semantics obtained using different input data 

TABLE II. COMPARING DIFFERENT SOUND FEATURES AND DIFFERENT NORMALIZATIONS 
 

Metrics B_1 B_2 B_3 B_4 Meteor Rouge-L Cider-D
Original sound 

scene 0.8182 0.7100 0.6186 0.5196 0.3524 0.7157 0.7865 
event 0.8209 0.7117 0.6185 0.5224 0.3460 0.7117 0.8043 

scene + event 0.8278 0.7227 0.6316 0.5365 0.3425 0.7144 0.7962 
Sound normalization: [-1~1] 

scene 0.8218 0.7118 0.6198 0.5217 0.3431 0.7131 0.8305 
event 0.8161 0.7083 0.6195 0.5266 0.3469 0.7127 0.8064 

scene + event 0.8334 0.7282 0.6401 0.5475 0.3513 0.7221 0.8387 
Sound normalization: [0~1] 

scene 0.8230 0.7158 0.6237 0.5255 0.3434 0.7147 0.8373 
event 0.8216 0.7141 0.6239 0.5298 0.3464 0.7124 0.7863 

scene + event 0.8283 0.7244 0.6352 0.5398 0.3518 0.7218 0.8175 
 

IV. CONCLUSIONS 
We propose a new video-captioning system that can 

automatically describe the content of a video as a short 
description in text format. This would enable users to search 
and find videos easily and accurately. The proposed system 
uses video, image, and audio signals simultaneously and 
extracts the corresponding features by using different CNN 
network architectures; finally, the acquired features are all 
combined and input into the SCN-LSTM network to create a 
semantic description. In experiments, we used semantics to 
arrive at score. Using this mechanism, we found that adding 
sound features is helpful to output a better description of the 
proposed semantic network. The sound events and scene 
features were combined. All the scores in the set of 
evaluation criteria are greatly improved. 

The architecture proposed in this study used for video 
description can be further investigated to achieve better 
performance. Audio feature extraction has scope for further 
improvement by pretrainning more different audio sources to 
increase the accuracy. Furthermore, a multi-task CNN model 
[20] can be used for learning between sound scenes and 
sound event categories, sharing learning outcomes and 
acquiring audio features with both scenes and events, which 

can improve our ability to extract the two characteristics of 
the sound instead of training two CNN networks separately, 
extracting features separately and then combining the two 
features. 
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