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Abstract—Large-scale cover song retrieval systems 
should be able to calculate song-to-song similarity and 
accommodate differences in timing, key, and tempo. 
Simple vector distance measure is not adequately 
powerful to perform cover song recognition, and ex-
pensive solutions such as dynamic time warping do 
not scale to millions of instances, making cover song 
retrieval inappropriate for commercial-scale applica-
tions. In this work, we used the content-based music 
features of songs as input and transformed them into 
vectors by using the 2D Fourier transform approach. 
Furthermore, we explored different machine learning 
approaches to reinforce the pattern of these vectors. 
By projecting the songs into a semantic vector space, 
we can use the efficient nearest neighbor algorithm to 
compare the similarity of songs and retrieve the most 
similar songs from the large-scale database. The pro-
posed system is not only efficient enough to perform 
scalable content-based music retrieval but can also 
develop the potential of machine learning approaches, 
making similar music recognition applications faster 
and more accurate. 

Keywords- large-scale music information retrieval; 2D 
Fourier transform; machine learning; million song dataset 

I.� INTRODUCTION 

In the big data era, methods to track and manage music 
similar to a specific work are in demand. Traditional re-
trieval methods search according to text-based clues, 
which leads to confusion. Present-day systems and re-
search use content-based information retrieval to solve 
many problems. In this work, we developed a content-
based music information retrieval (MIR) system, which 
promises many potential applications. The content-based 
retrieval system can find not only the exact copy of a giv-
en music track but also the novel versions of the original 
work, for example, “cover songs.” This has several appli-
cations. For example, when copyrighted music has been 
identified, the copyright holder can ensure the correct 
handling of songwriting royalties. In addition, listeners 
can be offered music recommendations according to con-
tent similarity. Moreover, researchers can analyze pat-
terns among similar pieces of music for digital signal 
processing. 

Studies have investigated small-scale databases that 
contain few tracks because of the scarcity of generally 
available databases. Most cover song recognition algo-

rithms are based on comparisons between chroma pat-
terns or related features and use time-consuming similari-
ty computation methods such as dynamic time warping 
(DTW). The release of the Million Song Dataset (MSD), 
which contains metadata and audio features for 1 000 000 
songs, has spurred the investigation of large-scale music 
information retrieval techniques [7]. Finding cover songs 
from among 1 000 000 tracks is closer in scale to a com-
mercial application than is identifying songs from a small 
database.  

Previous cover song identification systems on large-
scale datasets are based on indexing and fast retrieval. 
Bertin-Mahiuex and Ellis proposed using “chroma jump 
codes” [3]. They also proposed using 2D-Fourier trans-
form to compress the beat-aligned chromagram and re-
trieve the song in fixed-length vector space [4]. Maurizio 
Omologo proposed using “chord profiles” [5] which is a 
type of high-level summarization of musical songs.�

In recent years, machine learning has received more at-
tention from the MIR community. Content-based MIR 
techniques typically feature two-stage architecture: first, 
features are extracted from music audio signals and trans-
formed into a more meaningful representation. After be-
ing processed, these features are used as input to a classi-
fier to perform the MIR task.  

In this work, we used 2D Fourier transform magnitude 
[4],[6] to compress chroma patches of a song and pooled 
the output into a fixed-length vector. We then used ma-
chine learning approaches to reinforce the pattern of the 
vector. Because every vector represents a song in a se-
mantic vector space, we can use nearest neighbor classifi-
cation to efficiently search for songs similar to a music 
track.  

The rest of this work is organized as follows: In Sec-
tion II, we introduce the content-based music retrieval, 
including the cover song recognition task, chroma feature, 
and 2D Fourier transform. In Section III, we briefly in-
troduce the machine learning approaches. In Section IV, 
we explain our music retrieval system and describe how 
we transformed a music signal into a semantic vector. In 
Section V, we detail the experiments and compare the 
performance of our system with related works. We pre-
sent the conclusions in Section VI. 
 

II.� CONTENT-BASED MUSIC RETRIEVAL 

MIR has many applications, such as genre classification, 
artist recognition, music recommendation, and automatic 
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tagging. Most content-based MIR techniques use the 
spectrogram-based feature as input to perform tasks with-
out needing handcrafted labels. 

We assumed that cover songs are similar to the original 
songs. Our feature representation is the magnitude of the 
2D Fourier transform of beat-aligned chroma patches. In 
the following section, we introduce the cover song recog-
nition task, explain how our features are computed and 
describe their musical invariant properties.  

A.� Cover Song Recognition 

Cover song recognition has been widely studied in recent 
years and at the Music Information Retrieval Evaluation 
eXchange (MIREX) since 2007. An overview of cover 
song recognition can be found in [1]. Most covers are 
similar to the original song in melody but different in key 
and timing structure.  

 
Fig. 1. Illustration of musical transposition 

Fig. 1 illustrates the pitch and time shift of the original 
and cover. According to [1], cover song recognition algo-
rithms generally comprise five steps (Fig. 2). 

 
Fig. 2. Cover song recognition general block diagram. 

 

B.� Chroma feature 

Chroma features are pitch-class profiles (PCP) that are 
derived from the spectrogram and provide a coarse ap-
proximation of the music score. A chromagram is similar 
to a constant-Q spectrogram except that pitch content is 
folded into a single octave of 12 discrete bins, each corre-
sponding to a particular semitone. Fig. 3 shows the chro-
magram of an excerpt from My Heart Will Go On; the 
vertical axis represents the pitch and the horizontal axis 
represents the frame unit. We can also emphasize the en-
ergy of each frame by combining the chroma feature and 
loudness. 

 

 
Fig. 3. Chromagram and loudness of a song

We used the Ellis-style beat tracker1 [10] to obtain the 
segmentation of the song into beats. Averaging every 
segment chroma over beat times results in a beat-
synchronous chroma feature. Empirically, we can raise 

the highest values relative to the lowest by using a power-
law expansion. 

 
Fig. 4. Beat-aligned chroma features. (Top) a beat-
synchronous chroma feature. (Bottom) the power-law 
expansion feature. 2D Fourier transform 

Taking the 2D Fourier transform is a common technique 
in digital image processing, where it is useful for com-
pacting energy. Marolt first used 2D Fourier transform in 
an MIR task [6]. Fourier transform has a transposition 
property, in which the shift along the time axis does not 
affect the magnitude (proof follows). 

Assuming � � � ��� � ��	, Y(
) and X(
) are the 
spectrum of � � and ���	, respectively:
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The equations illustrate that time shift changes only the 
phase and does not influence the magnitude of the spec-
trum. Retaining the magnitude component and discarding 
the phase component provides invariance both to transpo-
sition in the pitch axes and beat axis. Fig. 5 furnishes an 
example of the transformation from chroma matrix to 2D 
Fourier magnitude coefficient (2D-FMC) matrix. 

 
Fig. 5. Magnitude of 2D Fourier transform of chroma matrix. 

III.� MACHINE LEARNING APPROACHES 

Machine learning provides broad application opportuni-
ties to different multimedia communities, such as com-
puter vision and speech processing. Even some classical 
machine learning approaches can significantly improve 
the performance of MIR tasks. 

A. Pooling

The representation that we obtained using 2D Fourier 
transform is not yet suitable as input to a classifier. We 
wanted to transform a matrix into a vector to render it 
compact and suitable for comparison using simple met-
rics such as Euclidean distance or cosine distance. We 
can then acquire a feature that is capable of performing 
scalable retrieval tasks. Although there are many kinds of 
pooling functions such as mean, median, and maximum, 
we observed that mean pooling obtained the most favora-
ble result in our system. 

1 https://github.com/librosa/librosa 
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B.� Feature Learning 

After pooling, a music signal can be represented as a vec-
tor. Recent results in feature learning indicate that simple 
algorithms such as K-means can be very effective, some-
times surpassing more complicated approaches based on 
restricted Boltzmann machines or auto-encoders [8]. 
Some classical machine learning approaches such as 
principal component analysis (PCA) and linear discrimi-
nant analysis (LDA) can be used to reduce the dimen-
sions of these vectors and reinforce the feature pattern. K-
means algorithm can automatically group the vectors into 
k clusters. We can use a trained K-means model to obtain 
the bag-of-words representation. In the K-means trans-
formed vector, each dimension represents the distance 
from the input vector to each centroid of cluster. 

 
Fig. 6. Illustration of K-means transformation. 

PCA is a type of dimensionality reduction method, which 
maintains the principal components according to the vari-
ance of each dimension. Vectors can be more compressed 
and discriminant after PCA. Both K-means and PCA are 
unsupervised learning, which means that the models can 
learn the pattern without any label. The other dimension-
ality reduction method is LDA, which is a supervised 
learning. LDA can learn the sematic relationship that 
minimizes the intraclass variance and maximizes the in-
terclass discrimination through the ground truth labels. 

Fig. 7 provides a visualization of musical vectors’ dis-
tribution and reveals that the same color points are covers 
from ground truth. Closer points are more similar to each 
other. 

 
Fig. 7. Examples of transformed vectors’ distribution in 2D-
Euclidean space: From left, K-means transformation, PCA 
transformation, and LDA transformation. 

C.� Nearest Neighbor Classification 
The nearest neighbor classification is one of the simplest 
classifiers in machine learning. The nearest neighbor al-
gorithm has been successful in many classification and 
regression problems. The nearest neighbor algorithm 
classifies the points according to their vector distance 
from each other. The nearest points of a specific point are 

labeled the neighbors. The classifier retains the training 
data and outputs the top-k nearest neighbors as a result. 
Fig. 8 furnishes an example of a Euclidean space that has 
five points. We can calculate the top-3 neighbors of the 
white point as the white point itself, the green point, and 
the red point, in that order; their Euclidean distances are 0, 
2.236, and 4.242, respectively. 

 
Fig. 8. An example of vector point space. 

IV. PROPOSED SYSTEM

The block diagram of the proposed system is presented in 
Fig. 9. The following text provide step-by-step explana-
tions of the proposed system, from audio signal to the fi-
nal retrieval list.  

 
Fig. 9. Diagram of the proposed system. 

A. Feature Extraction

The proposed system extracted the features from the au-
dio signal by using tools provided by the librosa1. It ob-
tained the chroma feature, loudness, and beat information 
for tracks to ensure the same representation for any input. 
The MSD had already provided common features.  

 
Fig. 10. Illustration of 2D-FMC Aggregation. 

B.� Feature Processing 

To get more meaningful representation of a song, each 
feature underwent a process: 
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First, the system combined the features to obtain the 

beat-aligned chroma features as described in Section IIB. 
It then used a fixed-length window to obtain the 2D-FMC 
matrices convolutionally and reshaped these matrices to 
aggregate them. Finally, we could obtain the same length 
matrix for any different length song, whose size is the 
product of the window size and the number of semitones 
(12 in our system). This is a 2D-FMC aggregation matrix.  
 

 
Fig. 11. Diagram of the feature processing. 

We can use a pooling function, such as mean and me-
dian, to obtain the 2D-FMC vector from the aggregation 
matrix. After pooling, the matrix is transformed into a 
vector; the number of dimensions is the same as the 
length of the matrix. Empirically, taking the logarithm 
can enhance the resolution of most of the dimensions that 
improve the retrieval result. 

 
Fig. 12. Diagram of the machine learning combination 
model; this model combines K-means, PCA, and LDA in 
order, which provides the most favorable result for our ex-
periment. 

C.� Machine Learning 

Although the 2D-FMC vectors are powerful enough to 
perform the cover song recognition task, the performance 
can be further improved by reinforcing the vector patterns. 
We investigated different combinations of three machine 

learning models. We used the SecondHandSongs (SHS) 
training set as training data; it contains 12 960 tracks. We 
then used the trained model to transform 2D-FMC vec-
tors into semantic vectors that have lower dimensions and 
a clearer pattern. We use scikit-learn2 implementation [9]. 

D.� Similarity Computation 

After projecting all the songs into a sematic vector space, 
we used simple metrics to measure the similarity between 
songs. The Euclidean distance was first considered. Fig. 
12 illustrates the Euclidean distance metric; when the dis-
tance is smaller, the similarity is greater. 

 
Fig. 13. Illustration of a Euclidean similarity measurement. 
Vectors A and B are separated by the shortest distance; there-
fore, they are the most similar songs when using the Euclidean 
distance metric. 

We also explored other vector distance metrics, including 
Cosine distance and Manhattan distance. Empirically, the 
advantage of Cosine distance is that using an angle be-
tween two vectors to measure similarity is the more effec-
tive way to identify similar songs. Fig. 13 indicates that 
although some music vectors have the same Euclidean 
distance for the input, we can still find the closest candi-
date by the Cosine distance metric and obtain a more ac-
curate result. 

 

Fig. 14. Comparison of Euclidean and Cosine similarity. 

V.� EXPERIMENTS 

To evaluate our retrieval system, we chose mean average 
precision (MAP) and average rank (AR) as our measures 
[3],[4]. MAP is computed as the mean of the average pre-
cision over a set of queries. The MAP reflects not only 
the accuracy but also the order of correct documents in a 
ranked list. AR is computed as the average position of 
relevant documents. For MAP, higher is preferable. For 
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AR, lower is preferable. To avoid misleading results 
caused by the overfitting of model training, �e trained our 
models using the SHS training set (12 960 tracks) and 
reported the result on the SHS testing set (5236 tracks). 
Finally, we compared our system with related work 
[2],[3],[4],[5] on the full MSD3 (1 000 000 tracks).  

A.� SecondHandSong dataset 

The SHS dataset is a subset of the MSD, which is de-
signed for the cover song recognition task. The SHS da-
taset consists of two subsets: the training set (12 960 
tracks) and the testing set (5236 tracks). The SHS training 
set has 4128 cliques and the SHS testing set has 1726 
cliques; “clique” here means groups of versions of a sin-
gle underlying musical work. 

B.� Retrieval experiment 

There are numerous parameters in our system, including 
the window sizes of 2D Fourier transform, the pooling 
function, and the coefficients of logarithm. We have also 
investigated various combinations of machine learning 
models. The dimensional number of 2D-FMC vector is 
1200, of which the 2D Fourier window size is 100. All 
the parameters were chosen empirically. We explored the 
window size range 50–100. We obtained more favorable 
results using a mean pooling function. Table 1 provides 
the optimal results of different combinations.  

Feature MAP AR 

2D-FMC (1200) 0.130285 1054.442 

K-means (4096) 0.051222 1383.014 

PCA (100) 0.150482 955.829 

LDA (100) 0.095285 1528.450 

K+P (100) 0.050138 1383.818 

K+L (100) 0.042946 1997.573 

K+P+L (100) 0.207817 1037.962 

P+K (100) 0.052065 1257.401 

P+L (100) 0.164885 1251.320 

P+K+L (100) 0.061158 1954.219 

Table 1. Results for the SHS testing set (5236 tracks); K 
denotes K-means, P denotes PCA, L denotes LDA. The 
number in parentheses means the dimensional number of 
the transformed vector. 

Distance MAP AR 

Euclidean 0.207817 1037.962 

Cosine 0.242044 764.041 

Manhattan 0.193269 1112.511 

Table 2. Results for the SHS testing set (5236 tracks); K 
denotes K-means, P denotes PCA, L denotes LDA. 

Different similarity metrics were explored. Table 2 
shows that simply replacing the Euclidean distance with 

Cosine distance can significantly improve the perfor-
mance. The experiments revealed that the KPL (K-means, 
PCA, and LDA, in order) combination exhibits the opti-
mum performance and that the Cosine similarity is the 
most useful method for identifying similar songs. K-
means transform can represent any input vector by the 
Euclidean distance relationship with the cluster centroids 
in the SHS training set. Although the performance in-
creased as the number centroids increased, the perfor-
mance of K-meant the transformed vector remained less 
favorable than that of the original 2D-FMC vector. PCA 
is an appropriate choice for reducing the dimension, even 
though only the single PCA can enhance the MAP. The 
performance of LDA was not as ideal as were the results 
for the SHS training set because supervised learning was 
affected by the training data. Although LDA can maxim-
ize the interclass discrimination, too many dimensions 
can result in a less optimal performance. We can properly 
combine the advantages of each machine learning ap-
proach by first using the K-means to obtain the bag-of-
words representation, then reducing the dimensions by 
PCA, and finally using LDA to maximize the discrimina-
tion. We can effect a significant improvement by using 
the combinational model. The combination of PCA and 
LDA can engender more favorable results than any single 
approach. The combinational order of each approach is 
crucial. We assumed that dimensional number parameters 
that perform optimally in each approach would also per-
form similarly in combinations. The dimensional number 
of the proposed KPL approach was enhanced from 1200 
to 4096 by K-means transformation. The number was 
then reduced from 4096 to 100 by PCA transformation. 
Finally, we retained both 100 and 50 dimensions through 
LDA because each approach has its advantages and dis-
advantages. We compared our proposed system with re-
lated works [2],[3],[4],[5] on the MSD (1 000 000 tracks). 
We queried the SHS testing set (5236 tracks) and sought 
their covers on the MSD except itself (1 vs. 999 999), be-
cause the most similar song for any query is the query 
song itself for which the vector distances is 0. The results 
are presented in Table 3. 

Method MAP AR 

Random ~0.000014 500 000 

Pitch Histogram [2] 0.00162 268 063 

Jcodes [3] 0.00213 308 370 

2D-FTM(50) [4] 0.02954 173 117 

2D-FTM(200) [4] 0.01999 180 304 

Chord Profiles [5] 0.03709 114 951 

Proposed KPL(50) 0.05918 128 322 

Proposed KPL(100) 0.07062 144 217 

Table 3. Results for the MSD (1 000 000 tracks) 
2 http://scikit-learn.org/stable/ 

3 http://labrosa.ee.columbia.edu/millionsong/ 
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Fig. 15 indicates that our system exhibits superlative 

performance among the others and that its MAP can 
reach 0.07062.  

 
Fig. 15. MAP Results for the MSD. 

VI.� CONCLUSION 

In this work, we proposed a large-scale cover song re-
trieval system. We used 2D Fourier transform to com-
press the music information features and the combina-
tional machine learning model to reinforce the vectors 
pattern. We have experimented different combinations 
and found that a proper order of three classical machine 
learning approaches can outperform any single approach. 
In addition to applying the nearest neighbor algorithm to 
efficiently retrieve similar music, we also explored dif-
ferent similarity metrics and discovered that the Cosine 
similarity provides the optimal result in our experiment. 
Our results indicate that our system is a promising start 
for large-scale music retrieval tasks that use machine 
learning approaches. In the future, we can continue to in-
vestigate different machine learning models such as deep 
neural networks to enhance accuracy. 
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