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Abstract 
In content-based image retrieval, the most challenging 

problem is the “semantic gap” between low-level visual features 
captured by machines and high-level semantic concepts perceived 
by human. This paper focuses on the high-level image features 
learning by the convolutional neural networks (CNN) in image 
retrieval. As a deep learning framework, CNN can extract 
meaningful image features in different layers, and transfer the 
image content into (abstract) semantic concepts. These high-level 
features descriptors can be better image representations than the 
hand-crafted feature descriptors, and further improve the image 
retrieval performance. The experimental results showed that layer-
wise learning invariant feature hierarchies in CNN is good at 
feature representations. Using CNN for feature extractions on 
CIFAR-10 and CIFAR-100 dataset, it achieved 0.707 and 0.244 of 
mean average precision (MAP), respectively. 

1. Introduction  
With the rapid development of Internet and mobile devices, people 
can easily obtain audio and video information everywhere. 
Because of the exponential growth of multimedia information, how 
to efficiently retrieve and manage multimedia information from 
huge databases becomes an important issue. Up to now, many 
general purpose image retrieval systems have been developed.  
The traditional image retrieval technique is based on text. In text-
based image retrieval (TBIR), users can retrieve images based on 
keywords or textual descriptions which are annotated by human. 
But this technique has two major disadvantages: (1) a considerable 
level of human labor is required for manual annotation and (2) the 
annotation inaccuracy due to the subjectivity of human perception. 
In order to overcome these drawbacks, content-based image 
retrieval (CBIR) is introduced. In CBIR, user can retrieve images 
based on global or local features which are extracted from images 
such as color, texture, SIFT and HOG. Content-based image 
retrieval aims to search for images through analyzing their visual 
contents. Thus, learning effective feature representations and 
similarity measures are crucial to the retrieval performance of a 
CBIR system. Good feature representations basically depend on 
the feature descriptors, while most existing hand-crafted feature 
descriptors are considered low-level and far from what human 
normally perceived from the world. 
One of the most challenging problems in CBIR is the “semantic 
gap” between low-level visual features captured by machines and 
high-level semantic concepts perceived by human [1]. Inspired by 
the recent successes of deep convolutional neural networks (CNN) 
in image classification tasks [2], it is possible for deep CNN to 
learn the hierarchies of feature representations effectively and fill 
the semantic gap. 
Deep convolutional neural networks have been successfully 
applied to many recognition tasks including digit recognition 
(MNIST dataset [3]), face recognition [4, 15] or detection [16], and 
object recognition (NORB dataset [5]), and have drawn a lot of 
interest from the computer vision. Instead of applying to 

recognition tasks, this paper applies the high-level features learned 
by CNN to image retrieval tasks. CNN has exhibits its great 
potential when the networks are going wider (many maps per layer) 
and deeper (many layers) [6]. But it also consumes much more 
training time on CPUs. However, graphics processing units (GPUs) 
have been created for accelerating computations by parallel 
computing [4, 7] which can save lots of training time compared 
with using CPUs. As the GPU technologies creating amazing 
breakthroughs in accelerating computation, it has much more 
potential for using DNN. 
In the following sections, we will review and describe the feature 
learning framework based on deep learning. In Section 4, we 
briefly introduce the common similarity measures in image 
retrieval tasks. Then, we show the experimental results on both 
image classification and retrieval tasks in Section 5. 

2. Related works 
In image classification tasks, Krizhevsky [8] trained a multi-layer 
generative model that learned to extract meaningful features which 
resemble those found in the human visual cortex. By pre-training a 
layer of features on a large set of unlabeled tiny images and 
training with restricted Boltzmann machine (RBM), objects 
classification on CIFAR-10 dataset was significantly improved. 
Based on RBM, Krizhevsky [9] further trained a two-layer 
convolutional deep belief network (DBN) which was composed of 
several RBMs, and focused on dealing with the boundary pixels of 
images by using global-connected units instead of convolutional 
units. Coates [10] applied several unsupervised feature learning 
algorithms using only single-layer networks including sparse auto-
encoders, sparse RBMs on CIFAR-10 dataset. Chan [11] proposed 
a simple deep network for image classification. In this architecture, 
PCA was employed to learn multistage filter banks followed by 
simple binary hashing and block histograms for indexing and 
pooling.  
In image retrieval tasks, Xia [12] developed a supervised hashing 
method for image retrieval, which simultaneously learned a good 
representation of images by deep convolutional neuron network. It 
firstly factorized the pairwise semantic similarity matrix into 
approximate hash codes for the training images and then trained a 
CNN with the approximate hash codes as well as the image tags. 
Lin [13] proposed an effective CNN framework to generate binary 
hash codes for fast image retrieval. Their method outperformed 
several state-of the-art hashing algorithms. 

3. Feature Learning framework 
The framework used in this paper could be divided into three 
stages: 1) pre-processing stages; 2) training stages; 3) testing 
stages, as shown in Fig. 1.  The idea of features learning had been 
explored for learning features from labeled data by supervised 
training in neural networks. Here, we mainly focused on learning 
meaningful feature representations from training images by using 
the convolutional neural networks to learn representations of their 
input at the hidden layers. These hierarchies of learned features 

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-231

IS&T International Symposium on Electronic Imaging 2016
Visual Information Processing and Communication VII VIPC-231.1



 

 

could be regarded as discriminative feature representations of input 
image and applied to many recognition tasks. 
 

 
 
Figure 1. Block diagram of proposed image retrieval framework. 

Pre-processing Stage 
In this stage, two steps are performed before training the CNN 
model. The first step is using sparse auto-encoder (SAE) for pre-
training the convolution kernels that will be used for extracting 
features in the CNN architecture. And the second step is artificially 
enlarging the training dataset via data augmentation scheme in 
order to prevent over-fitting. More details of pre-processing in two 
steps to learn better features are described as follows. 
Pre-training the convolution kernels by SAE 
In order to learn good feature representations, the model should 
have proper initial weights of the convolution kernels. We use an 
unsupervised learning algorithm for pre-training. In this work, the 
patch-based sparse auto-encoder was adopted [10]. The patches 
with size 5 by 5 were sampled randomly from unlabeled training 
images and used as the unlabeled input of an auto-encoder. And we 
also normalized the sampled patches by applying ZCA whitening. 
The auto-encoder is trying to learn an approximation to the identity 
function, which means that its output �̂� is similar to input x, as 
shown in Fig. 2. 
 

 
Figure 2. An auto-encoder aims to transform inputs into outputs with the 
minimum possible error and learns a compressed, distributed representation 
(hidden layer) for the input data. 

Finally, back-propagation (BP) algorithm was applied to minimize 
squared reconstruction error with an additional sparsity penalty 

term restraining these hidden units to maintain a low average 
activation. 
The pre-training weights 𝑊𝑆𝐴𝐸 ∈ ℝ64×25 and biases 𝑏𝑆𝐴𝐸 ∈ ℝ64×1 
were taken as the initial weights of 64 convolution kernels with 
size 5 by 5 in CNN training model, as shown in Fig. 3. The proper 
initial weights can usually improve CNN training model which 
extracts the key features from the images. 

 

        
Figure 3. In sparse auto-encoder, 64 features (with and without whitening) 
learned over 5*5 patches and these features will be taken as the convolution 
kernels in training stage. 

Data augmentation 
The most common way to prevent over-fitting on an image dataset 
is data augmentation that artificially enlarge the training dataset 
using label-preserving transformations. Training images were 
augmented by two schemes. The first augmentation scheme was 
taking horizontal reflections of each image in order to produce 
different viewpoints of the training images, while the second 
augmentation scheme uses histogram equalization to increase the 
global contrast of the training images for image enhancement. 
Notice that data augmentations should not change the class but the 
pixel values of the image. Here, we generated more data with 
translation and brightness invariant while not adding too much 
extra dimensions. Thus, the color images were converted to gray 
level before using horizontal reflections and histogram 
equalization schemes, as shown in Fig. 4 (c), (d). It created the 
fourth and fifth dimensions of training images with original three 
dimensions of RGB channels.  

 

 
 Figure 4. Data augmentation created additional feature information with the 
same label in different forms: 
(a) RGB (b) Gray level (c) Horizontal reflections (d) Histogram equalization 

Training Stage 
As shown in Fig. 5, the 7-layer architecture of CNN was built. It 
took 64 convolution kernels with size 5 by 5 as convolution filters. 
It was composed of three pairs of convolutional and sub-sampling 

(a) (b) (c) (d) 
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layers and was finally attached to a fully-connected layer that 
contains 400-dimensional neurons to represent the features of each 
image. 
In Convolutional layers, the pre-training weights 𝑊𝑆𝐴𝐸 was taken 
as the initial weights of convolution kernels, and features were 
extracted by applying a set of learned filters to the images in order 
to obtain a set of feature maps. In sub-sampling layers, it sub-
sampled the feature maps of the previous layer in order to reduce 
variance. 
The rectified linear transformation was adopted after each sub-
sampling layer by transforming the neuron x into (1) to prevent 
vanishing gradient problem, as shown in Fig.6. 

f(x) = max(0, x) (1) 

In [14], neurons with this nonlinearity were regarded as Rectified 
Linear Units (ReLU), which made CNN training faster than their 
equivalents with saturating neurons. 
 

 
Figure 6. Rectified Linear Units (ReLU) through a non-linear transformations. 
[14] 

After several convolutional layers alternating with sub-sampling 
layers and Rectified linear transformation, neurons were fully-
connected to a 400-dimensional layer as feature vector. Each 
image can be represented by a 400-dimensional feature vector and 
we can just compared the difference between these feature vectors 
in recognition task. 

      
Figure 7. The 400- dimensional feature vectors in fully-connected layer can 
serve as feature descriptors of each image. 

4. Similarity distance measures 
As shown in Fig. 7, the extracted features vectors learned from 
training images can evaluate the feature descriptors. In 
classification tasks, the features emerging in the fully-connected 
layers of the CNN model can be the image representations, which 
are often attached to a softmax classifier for classifying images. 
While in retrieval tasks, the feature vectors learned to classify 
images were taken as the feature descriptors, and used for 
measuring the similarity between the images. 
This paper used three different distance metrics to measure the 
similarity between images in image retrieval tasks. If the distance 
is small, there will be high degree of similarity, while a large 
distance leads to low degree of similarity. We compared the 
similarity between query image and the image dataset and sorted 
the final retrieval results based on the similarity distance metrics. 
Here are three distance metrics for measuring how much two 
images are alike: 
Euclidean distance 
The Euclidean distance between two points is the length of the 
path connecting them and it also known as 𝐿2norm. For any two n-
dimensional feature vectors, their Euclidean distance can be shown 
as (2): 

Figure 5. The 7-layer architecture of CNN model. We took the color images with size 32 by 32 as inputs and with additional two- dimensional image 
information created by data augmentation.  Features were mapping layer-wisely and finally connected to a fully-connected layer as the representation of 
every input image 

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-231

IS&T International Symposium on Electronic Imaging 2016
Visual Information Processing and Communication VII VIPC-231.3

http://dx.doi.org/10.2352/ISSN.2470-1173.2016.2.VIPC-231
http://dx.doi.org/10.2352/ISSN.2470-1173.2016.2.VIPC-231


 

 

𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑎, 𝑏) = √∑(𝑥𝑎𝑘 − 𝑥𝑏𝑘)2

𝑛

𝑘=1

 (2) 

Where  𝑥𝑎𝑘, 𝑥𝑏𝑘 are two feature vectors of the images. 
Manhattan distance 
Manhattan distance is a metric in which the distance between two 
points is the sum of the absolute differences of their Cartesian 
coordinates and it also known as 𝐿1 norm. For two n-dimensional 
feature vectors, their Manhattan distance is shown as (3): 

𝑑𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛(𝑎, 𝑏) = ∑|𝑥𝑎𝑘 − 𝑥𝑏𝑘|

𝑛

𝑘=1

 (3) 

Cosine distance 
Cosine similarity is very efficient to evaluate sparse vectors and 
the Cosine distance is determined by Cosine of the angle between 
the two objects. Two vectors with the same orientation have a 
cosine similarity of 1, and two vectors diametrically opposed have 
a Cosine similarity of -1. Cosine similarity is defined as (4): 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑎, 𝑏) =
∑ 𝑥𝑎𝑘𝑥𝑏𝑘

𝑛
𝑘=1

√∑ 𝑥𝑎𝑘
2𝑛

𝑘=1 √∑ 𝑥𝑏𝑘
2𝑛

𝑘=1

 (4) 

Thus, Cosine distance between two vectors which is correlated 
with their Cosine similarity is shown as (5): 

𝑑𝐶𝑜𝑠𝑖𝑛𝑒(𝑎, 𝑏) = 1 −
𝑐𝑜𝑠−1(𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑎, 𝑏))

𝜋
 (5) 

5. Experimental Results 
Our CNN model was evaluated on the image datasets for both 
classification and retrieval tasks by accuracy and mean average 
precision (MAP), respectively. By applying three different distance 
metrics, it exhibited much difference between their performances 
of sorting similar images in retrieval tasks. 

 
Figure 8. Example of images in the CIFAR 10 dataset. Each column shows 
samples belonging to the same category. 

Dataset 
The CIFAR-10 and CIFAR-100 dataset [8] was used for evaluation 
of performance in this experiment. The CIFAR-10 image dataset 
consists of 60,000 color images with size 32*32 which is a labeled 
subset of 80 million tiny images. It has 10 classes of different 
objects shown in Fig. 8. The training set has 5000 samples per 
class, and the testing set has 1000 samples per class. 
In order to evaluate our CNN model for image retrieval tasks, 
which usually contain more image categories, we further used the 
CIFAR-100 dataset which is similar with CIFAR-10 but with more 
classes. It has 100 classes with training set 500 samples per class, 
and testing set 100 samples per class. 

Image classification task 
Table 2 showed the image classification accuracy on CIFAR-10 
dataset. The method of {CNN_RGB} used the original training 
images as input of CNN without weights pre-training. It classified 
the CIFAR-10 dataset with 73.52% accuracy in 25 epochs. With 
two schemes of pre-training and data augmentation (DA), our 
method {Pre-train+CNN_RGB+DA} obtained the best accuracy of 
79.29% in 25 epochs. It showed that the learned features were far 
more useful than the method of raw pixels. 
Table 3 showed the classification results of our CNN model on 
CIFAR-100 dataset. For this task with more image classes, our 
method can still learn meaningful features from the training images.  
And our method {Pre-train+CNN_RGB+DA} also got better 
results than the method {CNN_RGB} with 2.4% increment in 
accuracy after 25 epochs. 
In the classification task, it is important for the CNN being the 
good feature learning model which learns the meaningful feature 
representations. Therefore, we also measured the top-3 accuracy in 
10 and 100 image classes. It showed that almost 97% of CIFAR-10 
images were correctly classified in top-3 predicted classes, while 
65% of CIFAR-100 images were predicted correctly in top-3 out of 
100 classes. The experimental results indicated that our CNN 
model can learn useful feature descriptors on both datasets. 
Therefore, the features learned from images are considered to be 
discriminative descriptors for retrieval tasks. 
Fig. 9 further showed the confusion matrix for CIFAR-10 by 
applying the method {Pre-train+CNN_RGB+DA}. The confusion 
matrix showed the classification accuracy in each class and that the 
classes of cat and dog were often misclassified to each other, while 
the transportation like automobile, ship and truck with over 85% 
accuracy. 

Table 2. Image classification accuracy on CIFAR-10 dataset 

Methods 
Accuracy (%) 

Top-1 Top-2 Top-3 
Raw pixels (reported in [8]) 37.3%   

RBM with BP [8] 64.8%   
Convolutional DBN [9] 78.9%   

Sparse auto-encoder [10] 73.4%   
PCANet [11] 78.7%   

Our CNN model in 25 epochs 
CNN_RGB 73.5% 87.4% 93.1% 

CNN_RGB+DA 75.3% 88.4% 93.7% 
Pre-train+CNN_RGB 77.9% 90.4% 95.0% 

Pre-train+CNN_RGB+DA 79.3% 91.4% 96.9% 
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Table 3. Image classification accuracy on CIFAR-100 dataset 

Methods 
Accuracy (%) 

Top-1 Top-2 Top-3 
Our CNN model in 25 epochs 

CNN_RGB 41.6% 54.9% 62.2% 
CNN_RGB+DA 43.7% 56.3% 64.0% 

Pre-train+CNN_RGB 43.2% 55.5% 62.6% 
Pre-train+CNN_RGB+DA 44.0% 57.3% 65.2% 

 
 

 
Figure 9. The Confusion matrix shows classification accuracy for the CIFAR-
10 dataset. Actual class on vertical axis; predict class on horizontal axis. 

Image retrieval task 
In this task, we evaluated the retrieval results by using mean 
average precision (MAP). Each testing image had its representative 
feature vector in layer 7 of our CNN model which applies the 
method {Pre-train+CNN_RGB+DA}. The similarity between 
images was calculated by measuring the similarity distance 
between two feature vectors. 
Figs. 10 and 11 showed the retrieval results based on sorting the 
cosine distance between query image and images from the dataset 
by top-30 minimum distance. For the query image of “dog”, it’s 
not surprisingly that some cats were appeared in this retrieval 
results. As for the query image of “automobile”, some “truck” 
images showed in the ranked retrieval results. 
 

 
 
Figure 10. The retrieval results of querying an image of “Dog” on CIFAR-10. 

 
 
Figure 11. The retrieval results of querying an image of “Automobile” on 
CIFAR-10. 

Table 4 and Table 5 showed the retrieval performance for CIFAR-
10 and CIFAR-100 datasets in mean average precision. The best 
performance in two datasets was both applying Cosine distance as 
similarity distance metric. Their MAP performance can reach 
0.707 in 10 classes and 0.244 in 100 classes, while Xia [12] using 
CNN as feature learning model and learning approximate hash 
codes with 48-bit reached 0.532 of MAP with CIFAR-10. 

Table 4. Image retrieval MAP on CIFAR-10 dataset 

Distance metrics MAP Matching time 
(s/query) 

Euclidean Distance 0.671 0.085 
Manhattan Distance 0.694 0.083 

Cosine Distance 0.707 0.262 

Table 5. Image retrieval MAP on CIFAR-100 dataset 

Distance metrics MAP Matching time 
(s/query) 

Euclidean Distance 0.189 0.115 
Manhattan Distance 0.217 0.081 

Cosine Distance 0.244 0.229 
 

6. Conclusion 
This paper proposed an image retrieval method using deep 
convolutional neural networks. It focused on the high-level image 
feature extraction by using deep learning to train the weights of 
neural network.  The experimental results showed that layer-wise 
learning of feature hierarchies in CNN could extract the 
hierarchical image representation, which would fill the semantic 
gap. In order to learn the high-level semantic concepts of images 
well, we further pre-trained the initial weights of CNN and 
provided different a view of feature information by adopting the 
data augmentation scheme in our CNN model. 
 By using Cosine distance as the distance metric for similarity 
measure, we got the best retrieval results with MAP 0.707 and 
0.244 on the CIFAR-10 and CIFAR-100 datasets, respectively. 
 
 
 

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-231

IS&T International Symposium on Electronic Imaging 2016
Visual Information Processing and Communication VII VIPC-231.5

http://dx.doi.org/10.2352/ISSN.2470-1173.2016.2.VIPC-231
http://dx.doi.org/10.2352/ISSN.2470-1173.2016.2.VIPC-231


 

 

References 
[1] J. Wan, D. Wang, C.H. Hoi, P.C Wu, “Deep Learning for Content-

Based Image Retrieval: A Comprehensive Study,” ACM International 
Conference on Multimedia, pp.157-166, 2014. 

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet 
Classification with Deep Convolutional Neural Networks,” Advances 
in Neural Information Processing Systems, pp. 1097-1105, 2012. 

[3] Y. LeCun, F.J. Huang, and L. Bottou, “Learning Methods for Generic 
Object Recognition with Invariance to Pose and Lighting,” in 
Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, 2004. 

[4] D. Strigl, K. Kofler, and S. Podlipnig, “Performance and Scalability 
of GPU-Based Convolutional Neural Networks,” Euromicro 
Conference on Parallel, Distributed, and Network-Based Processing, 
pp. 317-324, 2010. 

[5] D. Cireşan, U. Meier, and J. Schmidhuber, “Multi-column Deep 
Neural Networks for Image Classification,” in Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition, 2012. 

[6] D. Cireşan, et al., “Flexible, High Performance Convolutional Neural 
Networks for Image Classification,” in International Joint Conference 
on Artificial Intelligence, pp.1237-1242, 2011. 

[7] R. Uetz and S. Behnke, “Large-scale Object Recognition with CUDA 
accelerated Hierarchical Neural Networks,” in IEEE International 
Conference on Intelligent Computing and Intelligent Systems, 2009. 

[8] A. Krizhevsky, G. E. Hinton, “Learning Multiple Layers of Features 
from Tiny Images,” Master’s thesis, Department of Computer Science, 
University of Toronto, 2009. 

[9] A. Krizhevsky, G. E. Hinton. “Convolutional Deep Belief Networks 
on CIFAR-10”, Unpublished manuscript, 2010. 

[10] A. Coates, A.Y. Ng, H. Lee, “An Analysis of Single-Layer Networks 
in Unsupervised Feature Learning,” International Conference on 
Artificial Intelligence and Statistics, pp. 215-223, 2011. 

[11] T.H. Chan, et al, “PCANet: A Simple Deep Learning Baseline for 
Image Classification?” IEEE Transactions on Image Processing, 
vol.24, no.12, pp.5017-5032, 2015. 

[12] R. Xia, et al. “Supervised Hashing for Image Retrieval via Image 
Representation Learning”, in Proceedings of the AAAI Conference 
on Artificial Intelligence, 2014. 

[13] K. Lin, et al. “Deep Learning of Binary Hash Codes for Fast Image 
Retrieval,” Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition Workshops. 2015. 

[14] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted 
Boltzmann Machines,” in Proceedings of International Conference on 
Machine Learning, 2010. 

[15] H. Khalajzadeh, M. Mansouri, and M. Teshnehlab. “Face Recognition 
Using Convolutional Neural Network and Simple Logistic 
Classifier,” Soft Computing in Industrial Applications. Springer 
International Publishing, 2014. 197-207. 

[16] Farfade, S. S., Saberian, M., & Li, L. J., “Multi-view Face Detection 
Using Deep Convolutional Neural Networks,”arXiv preprint 
arXiv:1502.02766. 

 
 
 

Author Biography 
Chien-Hao Kuo received his BS degree in communication engineering 
from National Central University (NCU), Taiwan, in 2009. He is currently 
pursuing his PhD degree at the Video-Audio Processing Laboratory in the 
Department of Communication Engineering at NCU, Taiwan. His research 
interests include video/image processing, object tracking and recognition. 

Yang-Ho Chou received his BS degree and MS degree in communication 
engineering from National Central University, Taiwan, in 2013 and 2015, 
respectively. His research interest is image retrieval. He is currently 
researching into multimedia and deep learning techniques at Chunghwa 
Telecom Laboratories. 

Pao-Chi Chang received his PhD degree in electrical engineering from 
Stanford University, California, in 1986. From 1986 to 1993, he was a 
research staff member at IBM T. J. Watson Research Center, New York. In 
1993, he joined the faculty of NCU, Taiwan, where he is presently a 
professor in the Department of Communication Engineering. His main 
research interests include speech/audio coding, video/image compression, 
image and music retrievals, and deep learning techniques.   

 

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-231

IS&T International Symposium on Electronic Imaging 2016
Visual Information Processing and Communication VII VIPC-231.6

http://dx.doi.org/10.2352/ISSN.2470-1173.2016.2.VIPC-231
http://dx.doi.org/10.2352/ISSN.2470-1173.2016.2.VIPC-231

