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ABSTRACT 

This work focuses on classical music cover song retrieval in AAC 

compression domain. In our proposed system, the modified 

discrete cosine transform coefficients (MDCT) are directly used to 

represent 12-dimensional chroma feature without a fully decoding 

process, which can save about 70% decoding complexity. The 

MDCT coefficients are processed for enhancing chord 

characteristics and the dot-product operation is used to calculate 

the chroma similarity matrix. Finally, the similarity score between 

two songs is evaluated by counting the similarity values along 

optimal path in the chroma similarity matrix. The proposed 

system can reach 97% of precision and save over 90% matching 

time compared with traditional approach operated in the 

waveform domain.  

Categories and Subject Descriptors 

General Terms 

Algorithms, Performance, Design, Experimentation. 

Keywords 

Classical music, cover song, AAC, compression domain, content-

based music retrieval 

1. INTRODUCTION 
With the rapid development of Internet and multimedia 

compression techniques, people can easily download or share 

multimedia data through networks. Therefore, how to efficiently 

retrieve query from a huge multimedia database becomes an 

important issue in the present research. The most commonly used 

method of search engines is through textual labels. However, the 

label created by people may be ambiguous or even with errors. 

This problem in retrieving classical music occurs more often than 

pop music. Accordingly, content-based music retrieval (CBMR) 

was proposed to extract the feature from music content as the 

representation to overcome the errors in labeling from human 

being.  In recent years, CBMR has become a high-profile research 

area in multimedia applications. Ellis et al. extracted beat-

synchronous chroma features and used cross-correlation to 

compute similarity between songs [1]. Serra et al. used an 

enhanced version of chroma features, and utilized dynamic 

programming local alignment algorithms to measure the similarity 

scores [2]. Kim used note temporal changes (delta chroma feature) 

and evaluated covariance matrix to measure similarity of songs 

[3]. Chuan extracted an enhanced chromagram and used Bayes 

classifier to calculate similarity [4]. Bertin-Mahieux et al. used a 

fingerprinting-inspired model to conquer large cover song dataset 

recognition [5]. However, the preceding related works all 

extracted features from WAV format files.  

As a matter of fact, most digital audios transmitting on Internet 

have already been compressed. Using above-mentioned retrieval 

methods, a fully decoding process and time-frequency analysis 

before feature extraction are required as shown in Fig.1. On the 

contrary, the most useful information is preserved in compressed 

audio files. It is a reasonable approach that the compressed files 

can be partially decoded to extract features directly. Hence, in this 

paper, we propose a system architecture that retrieves classical 

music cover song in Advanced Audio Coding (AAC) coded files. 

 

Figure 1.   Music information retrieval system 

The rest of this paper is organized as follows. The detail of 

proposed method is described in Section 2. In Section 3, 

experimental results are presented. Finally, the conclusions are 

stated in Section 4. 

2. THE PROPOSED CLASSICAL MUSIC 

COVERSONG RETRIEVAL SYSTEM 
The proposed system architecture is illustrated in Fig. 2. First, 

AAC audio file is decoded partially to get MDCT coefficients, 

which are pre-processed by filtering suitable ranges of frequency 

and magnitude. Then the MDCT coefficients are refined to 12-

dimensional chroma feature. In the matching step, the dot-product 
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operation is used to generate the chroma similarity matrix and the 

dynamic time warping (DTW) operation calculates the similarity 

score. Finally, the similarity weighted mean between the original 

and cover song is evaluated along the optimal similarity 

accumulated path. 

 

Figure 2.  Diagram of proposed system architecture 

2.1 Pre-processing 
In the AAC audio encoding process, the time-frequency analysis 
tool is the modified discrete cosine transform (MDCT) [6], which 
is defined as follows, 
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where x is windowed input sequence, n is sample index, k is 

spectral coefficient index, and N is the length of the transform 

window.  

2.1.1 MDCT magnitude truncation 
To raise the resolution of chroma histogram and reduce the 

interference of noise and low magnitude feature in matching result, 

this system normalizes and truncates the MDCT coefficients 

magnitude for each frame as defined in (2) and (3). 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙(𝑘, 𝑙) =
𝑋(𝑘,𝑙)
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𝑁
2
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  (2) 

if 𝑋𝑛𝑜𝑟𝑚𝑎𝑙(𝑘, 𝑙) ≤ 𝑇𝑚𝑎𝑔, 𝑡ℎ𝑒𝑛 𝑋(𝑘, 𝑙) = 0 (3) 

 

where l represents frame index. In (3), the magnitude of 

normalized MDCT coefficient below a threshold Tmag would be 

truncated. 

2.1.2 Dynamic frequency truncation 

Semitone frequency in low pitch class needs relatively high 

frequency resolution, which may cause many low MDCT 

coefficients index to map into wrong chroma bins. Considering 

the sampling rate of songs in our database is 44.1 kHz, the system 

chooses 260Hz as the lower bound. In addition, the harmonics of 

pitch also cause a wrong mapping problem at high multiples of 

pitch. The wrong mapping starts from the third harmonic 

frequency. Hence the system truncates high frequency 

dynamically by observing the whole song frequency energy 

distribution [7]. If the energy average distributes in 260~2 KHz 

(Octave 4-6), i.e., the energy in high frequency range is significant, 

the system treats the frequency beyond 2 KHz as harmonics and 

chooses 2kHz as upper bound. Otherwise, 1 kHz (Octave 4-5) is 

chosen as the upper bound. 

2.2 Feature Extraction 
In feature extraction step, we calculate each frequency component 

of the pre-processed MDCT coefficient and determine which 

chroma bin b it belongs to [8]. The chroma bin is calculated as 

defined in (4), where 𝑓𝑘 is center frequency of MDCT coefficient, 

B(b) is the set of MDCT coefficients which belongs to chroma bin 

b, and the 𝑓0 is set to be 16.352Hz in our experiment. 

𝐵(𝑏) = {𝑘|𝑚𝑜𝑑 (𝑟𝑜𝑢𝑛𝑑 (12 𝑙𝑜𝑔2 (
𝑓𝑘

𝑓0
) , 12) + 1) = 𝑏} (4) 

Chroma features record the energy intensity associated with each 
of the 12 semitones and the energy in the same notes is folded 
together. Therefore, chroma feature matrix H can be obtained by 
(5): 

𝐻(𝑏, 𝑙) = ∑ 𝑋(𝑘, 𝑙)𝑘∈𝐵(𝑏)   (5) 

For reducing matching time, a number of frames are merged into a 
segment as (6) 

𝐶(𝑏, 𝑚) =
1

𝑃
∑ 𝐻(𝑏, 𝑗)𝑚×𝑃

𝑗=(𝑚−1)×𝑃+1   (6) 

where P is segment size, m is segment index, and C is 

segmentation chroma feature matrix. Empirically, the segment 

size is determined by how many frames a segment contained in 

around one second of time.  

Finally, the chroma feature matrix is shown in Fig. 3. The 

horizontal direction expresses segment length in the entire piece, 

and the vertical direction expresses the energy of each semitone. 

 

Figure 3. Chroma feature histogram 

2.3 Matching 
In the matching stage, we first utilize dot-product calculation to 

compute chroma similarity matrix of the similarity between query 

and reference songs. Then the dynamic time warping is used to 

calculate similarity score. The details of chroma similarity matrix 

and dynamic time warping are described in the following 

subsections. 

2.3.1 Chroma similarity matrix 
Because the query and reference song may have different keys, 

the query is transposed to the same key as the reference. The 

system utilizes the optimal transposed index (OTI) to calculate the 

key distance between two songs [2]. The OTI function is defined 

in (9). 
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𝑘 = 𝑎𝑟𝑔 𝑚𝑎𝑥
0≤𝐽≤11

{𝑚𝑒𝑎𝑛(𝐶𝑑) ∙ 𝑐𝑖𝑟𝑐𝑠ℎ𝑖𝑓𝑡(𝑚𝑒𝑎𝑛(𝐶𝑞), 𝐽)}  (9) 

where “  ” indicates a dot product and circshift() is a function that 

rotates the vector h
q
 with J  positions. After estimating the key 

distance by OTI, we transpose the chroma feature matrix of the 

query into the same key as in reference song.  

𝐶𝑞
′ (𝑏, 𝑚) = 𝐶𝑞(𝑚𝑜𝑑((𝑏 + 𝑘)/12), 𝑚) (10) 

After the transposition, the query and the reference song are in the 

same key. And then, the chroma similarity matrix A is calculated 

as (11): 

𝐴 = 𝐶𝑞
′ ∙ 𝐶𝑑

𝑇 (11) 

The chroma feature matrix is normalized so that all entries in 

chroma similarity matrix are between 0 and 1. The 

query/reference song of chroma similarity matrix is shown in Fig. 

4. The more the entry close to 1, the more the similarity between 

two segments is.   

 

Figure 4.    Chroma Similarity Matrix 

2.3.2 Dynamic time warping (path constraint): 
The chroma similarity matrix is used as input for DTW algorithm 

to calculate similarity grade. First, we initialize a (M+1)×(E+1) 

matrix G in which entries in the first row and column are zero and 

the second row and column are equal to the entries in first row 

and column of matrix A. Then, we calculate other entries in 

matrix G through a recursive formula as defined in (13). In order 

to reduce DTW algorithm computational time, a path constraint is 

given to DTW computational region which is obtained empirically 

and defined in (14). 

𝐺(𝑖, 𝑗) = {
𝐷 ∈ 𝑌(𝑖, 𝑗) 𝑓𝑜𝑟 𝑖 = 3, … , 𝑀 + 1

𝑠𝑘𝑖𝑝 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑗 = 3, … , 𝐸 + 1
 (12) 

𝐷 = 𝑚𝑎𝑥 {

𝐺(𝑖 − 1, 𝑗 − 1) + 𝐴(𝑖 − 1, 𝑗 − 1)

𝐺(𝑖 − 1, 𝑗 − 2) + 𝐴(𝑖 − 1, 𝑗 − 1)
𝐺(𝑖 − 2, 𝑗 − 1) + 𝐴(𝑖 − 1, 𝑗 − 1)

 (13) 

𝑌 = {(𝑖, 𝑗)|4𝑀𝑖 − 3𝐸𝑗 > −
3

5
𝑀𝐸 ∩ 3𝑀𝑖 − 4𝐸𝑗 <

3

5
𝑀𝐸} (14) 

The output of DTW algorithm is shown in Fig. 5.  

2.4 Post-processing 

In post-processing step, the similarity score is evaluated from 

matrix G. Different to [2], we count the values which distribute on 

the optimal accumulated path and sum up the quantity of each 

scale as the similarity score. In Fig. 5, the max energy point 

represents a starting point to find its accumulated path, as the 

black line shown in Fig. 6(a) (c). Each input query finds an 

optimal accumulated path with each reference song in the 

database. Then we collect statistics of the entries in chroma 

similarity matrix G on optimal accumulated path. In Fig. 6(b) and 

6(d), the more the histogram distribution is on the right side, the 

more similar between two segments is. 

 

Figure 5. DTW algorithm output 

 

 

(a)   (b) 

 

(c)   (d) 

Figure 6. (a) Original/Cover chroma similarity matrix 

(b) Histogram of (a) 

(c) Original/Non-cover chroma similarity matrix 

(d) Histogram of (c) 

Next, we calculate the weighted arithmetic mean of the entries 

histogram distribution as final similarity score: 

𝑊 = ∑ 𝑤(𝑖)𝑎(𝑖)𝑖   (15) 

𝑅𝑎𝑛𝑘1 = 𝑎𝑟𝑔 max
𝑑∈𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒

(𝑊𝑞,𝑑) (16) 

where 𝑎 denotes the scale from 0 to 1 with a space 0.1, 𝑤 is the 

proposition of 𝑎. Finally the retrieving result, Top-N ranks, will 

be returned. 

3. EXPERIMENTAL RESULTS 
The experiments of the proposed system are discussed in two 

parts. First, the decoding computational complexity is analyzed. 
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Second, the performance of our proposed system is evaluated and 

compared with the related work. 

3.1 Computational Complexity Analysis 
The computational complexity of AAC decoder is analyzed in [9]. 

Fig. 7 summarizes the complexity analysis results of the AAC 

decoder. In our proposed system, it partially decodes MDCT 

coefficients from AAC files without fully decoding process, and it 

could save about 70% computational complexity.  

3.2 System Performance Evaluation 
Our testing database consists of 985 classical music songs which 

are 124 queries and 861 covers. The sampling rate of all songs is 

44.1 kHz.  The number of covers per song is ranging from 2 to 7. 

In experiments, we evaluated the retrieving accuracy of the 

proposed system and compared with [1] which needs fully 

decoding process for the encoded files as in traditional retrieval 

systems. 

 

Figure 7.    Complexity analysis of AAC decoder 

Table 1 shows the system performance. The amount of the correct 

cover version is recall in Top-N, and the Mean Reciprocal Rank 

(MRR) reflecting the rank of the first correctly identified cover for 

each query are presented. As shown in Table 1, the proposed 

method can retrieve 118 covers in Top-1 and MRR reaches 0.96. 

In addition, in the matching process, the proposed method can 

save over 90% time compared with [1]. Secondly, we use all of 

the songs we collected to evaluate the system performance. The 

experiment results show that proposed method can reach Precision 

of 97%, Recall of 0.87, and an F-measure of 0.92. The proposed 

system can achieve superior performance with much less 

computational complexity.  

Table 1. System performance evaluation 

 
Ellis system [1] Proposed system 

Top-1 65/124 118/124 

Top-3 76/124 119/124 

Top-5 77/124 119/124 

Top-10 82/124 120/124 

MRR 0.57 0.96 

Matching 

Time(sec.) 
513.573 28.590 

Saving Time  94% 

4. CONCLUSIONS 
This work utilizes simple and low-complexity procedures to 

enhance the system performance. The system we proposed only 

partially decodes MDCT spectral coefficients without full 

decoding. The pre-processing that skips low energy component 

and limits the frequency range can reduce the computational 

complexity and promote matching results. We utilize dot-product 

calculation to get chroma similarity matrix and calculate similarity 

weighted mean by finding the optimal similarity accumulated path. 

Since classical music is much more rigorous than popular music, 

it provides less freedom for cover songs. Hence the path 

constraint in dynamic time warping eliminates a lot of inefficient 

searches. As a result, our system can save over 90% matching 

time and reach Precision of 97%. 
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